
As400 Stuff

Table of Contents:
Basic..13

1. Define library?...13

2. Define object?..13

3. What is the difference between OPM, EPM and RPGLE?....................................14

4. What are the disadvantages of using CL over RPG?..14

5. How you can read and write single command in CL?...14

6. How to retrieve a date in CL?...15

7. How to copy a record in existing object to another object?...............................15

8. How you will avoid multiple users updating the same records?........................16

9. Explain WRKOBJPDM and DSPOBJD?..16

10. How to create RPG, RPGLE, CL, CLLE, PF, LF, PRN, and display file?...............16

11. What are the advantages of using AS/400 system?..17

12. What are the various types of Security in AS/400?...18

13. Explain user profile and group profile?...19

14. What is Lock? How you achieve in AS/400?..21

15. How you will release the lock?..21

16. Explain about RTNCSRLOC?..21

17. How you execute CL command in RPGLE?..21

18. What's new in V4R4 and RPG IV?..21

19. Can you clear up the confusion in the different releases of RPG IV and OS/400
and ILE?...22

ILE Concepts...25

1. Integrated Language Environment (ILE)..25

2. What is a Module?..30

3. What is a Service Program?...30

4. What is a binding Directory?..31

5. Why Import and Export?..31

Page 1 of 250

As400 Stuff

6. What is Activation Group?..31

7. Name Some ILE API’s? And tell something about them?....................................32

8. What are activation groups?..33

9. How do I create and use a service program...34

10. Modules - How to write and reuse them...37

11. What are the ILE RPG coding programming considerations?..........................39

12. What Opcodes are added in ILE?..41

13. What are the behavioral differences b/w OPM RPG/400 and ILE?...................41

14. ILE advantages over RPG?..42

15. Define binder program?..42

16. How to the create module?...42

17. What are the differences in CALL, CALLB and CALLP?....................................44

18. What is the difference between Bind by value and Bind by reference?..........44

19. Define pass by value and pass by reference?...45

20. What are Program Entry Procedure (PEP) and User Entry Procedure (UEP)?. .45

21. Define Copybook in RPGLE?..45

22. How to create a service program and what are the steps involved in this?....46

23. Explain procedure used in RPGLE?...46

Database..47

1. Define source physical file?...47

2. Physical Files and Logical File..48

3. List the differences between physical file and logical file..................................48

4. What are the four levels of entries in physical file?...49

5. What are the six levels of entries in logical file?..50

6. Explain JDUPSEQ and JDFTVAL...50

7. What are the different between non-join logical files and join logical files........51

8. How many record formats can have physical & logical file................................51

9. What is the advantage open query file?..51

10. Explain non-join logical file?...51

Page 2 of 250

As400 Stuff

11. It is possible to insert record to JOIN LF?..52

12. Explain join logical file?..52

13. Explain self join?...59

14. Explain normalization?..62

15. Explain the command ADDPFCST?...62

16. How to send the message to the screen SNDPGMMSG?.................................62

17. How you can list all the LF of a PF?...62

18. What is use of DSPFFD and DSPFD?...63

19. Explain inner join or natural join and left outer join?......................................63

20. How to create a trigger in AS/400?...68

21. How will be establishing REFERENTIAL INTEGRITY in as/400 systems?..........68

22. What RUNSQLSTM will do?..70

23. What is a field reference file?...70

24. What are the various ways creating access path?..70

25. How many record formats PF, LF, DSPF and SFL?...71

26. Define KLIST?..71

27. Define PLIST?..71

28. Define composite key?...71

29. Is it possible to create a logical file whose Physical file is not in same library?
71

30. Can you delete the record space permanently in PF through CL?..................71

31. What is the difference between adding keys & constraints into a physical file?
71

32. How to insert more than one record to a pf at a time? (Bulk insert to a pf). . .72

33. How to see number of logical files depending on a pf? Can we declare more
than 20 logical files from a single pf? Is it possible?...72

34. I want to change the attribute of field or want to add new field in existing PF
but condition is format level identifier should not change, is it possible?................72

35. Maximum how many fields we can create under a record format of PF?........72

36. How can we write LF using flat file?..73

Page 3 of 250

As400 Stuff

37. Why we create the Physical File Member?..73

38. CHGPF to compile the PF without using the data:...73

39. Multi format Logical file Example:..74

40. Access Path – PF and LF..75

41. Tell me the differences between DB2 CLI (call Level Interface) and embedded
SQL? 75

42. General points in DB2/400..76

43. File pointer – after a failed chain operation..82

44. What are Triggers?...82

45. What is the purpose of USROPN keyword?...83

46. What is LEVEL CHECK?...83

OVRDBF..83

1. What exactly the OVRDBF does?...83

OPNQRYF..84

47. What is the open query file?...84

48. What is the different between OPNQRYF and SQLRPG?..................................85

49. What are the various steps in creating OPNQRYF?...85

50. How the records are accessed for using OPNQRYF?.......................................88

51. What is the difference between FMTDTA and OPNQRYF?...............................88

52. List out the Differences between a LF and command OPNQRYF?...................88

53. OPNQRYF - Short explanation with samples in CLP...89

54. OPNQRY Example...94

SQLRPGLE..96

55. SQLRPGLE Example..96

56. SQL Cursor:...97

57. Sample imbedded SQLRPGLE program...99

58. Embedded SQL:..103

Journal..103

59. What is the journal?..103

Page 4 of 250

As400 Stuff

60. What are the various steps creating journal?...103

61. Explain Commitment Control?..104

62. Can anybody tell why Journaling is compulsory before Commitment Control?
104

63. Commitment control Implementation and controlling commitment control
from external program...104

Data Areas, Queues, Arrays & Structures:...104

1. What is the data area?...104

2. Define LDA, GDA, and PIP?...106

3. What is the data queue?..107

4. Explain QSNDDTAQ and QRCVDTAQ?..107

5. What are the mandatory parameters for declaring a Data queue?..................107

6. What is the command to create menu?...108

7. What is the difference between CALL and Transfer Control (TFRCTL)?............108

8. Explain Multi Dimensional Array?...108

9. Define data structure and types of data structure?...108

10. How do I declare an array with a dynamic number of elements?.................110

11. Data structure array basics..111

12. Clear up the confusion over multiple-occurrence data structures................111

13. Data area, Data Queue and Message Queue:...113

14. Group Jobs and Group data area:...113

15. Data Structure Array and Example:..115

16. Difference between Data area and data queue:...115

17. Difference between data-structure array and multi occurrence data structure
115

18. RPG data structure arrays improvement over multiple-occurrence data
structures...115

19. Compile time array, pre run time array run time array................................115

20. RNF7701 data structure not allowed..116

DEBUG...117

Page 5 of 250

As400 Stuff

1. How to Debug a Batch ILE RPG?..117

2. Debug value of pointer?...118

3. How do I debug ILE programs? STRISDB doesn't work!...................................118

4. How can I debug an ILE program in batch?..119

5. How can I debug an OPM program in batch?...120

6. How can I tell if my program is running in batch or interactive?......................121

7. How to debug jobs in MSGW without ending it?...123

8. How do you do debugs for ILE programs and Handle Exceptions?..................123

Programming Concepts...124

1. General RPG IV Program Cycle..124

2. What are Static bind and Dynamic binds?...125

3. CRTBNDRPG & CRTRPGPGM..126

4. Hidden Fields:..126

5. Last statement of any RPG pgm is LR?..126

6. Is Constant can be define as a key field?...126

7. Which keyword is used both in subfile and subfile control record format of a
DSPF?...127

8. Define interactive jobs and batch jobs?...127

9. WHAT IS THE DIFFERENCE BETWEEN 'COLHDG' AND 'ALIAS'?.........................127

10. What's the difference between CONST and VALUE?.....................................127

11. CL – EOF:..128

12. Level Check Error:..128

13. Significance of Return and *INLR = *ON...128

14. *Entry – significance of factor 1, factor 2 and result fields............128

15. EDTCDE & EDTWRD, OVERLAY, RSTDSP, Command Attention key and
Command Function Key and Validity check:..128

16. What is the difference between CA and CF keys?...129

17. What is PSDS?...129

18. What is the file information data structure?...131

19. CL Parameter Basics...139

Page 6 of 250

As400 Stuff

20. Calling program TSTCALL code:..143

21. Display Program References (DSPPGMREF)..145

22. Difference between *Omit and *no pass:...146

23. What do we mean by externalizing?...148

24. What will FOR opcode will do?..148

25. What are the various stages for a job after it is submitted?.........................149

26. What is an activation group?..149

27. What are the statements that are affected by activation group?.................150

28. How to see source of copybooks include in a program while compiling or
debugging?..150

29. Explain keyword in ILE?..150

30. How you can schedule a job to run periodically?..150

31. How you can import and export a data type between 2 programs?.............150

32. Navigation between two screens..150

33. Define indicator & MOVEA?...151

34. Define ITER / LEAVE/DO/Dow?..151

35. Explain Assume and Overlay?...152

36. Why externalize?..152

37. What is the disadvantage of using Validity Check keyword? How to overcome
these disadvantages?..152

38. Chain:..153

39. Which of the following operations does NOT zero the field FLDA defined as
4,0? 153

40. How can you check for a records existence without causing and I/O
(CHAIN/READ)? With the help of File Information Data Structure, we can check
existence of records in a physical file. The code is described below:.....................153

41. What is the difference between UDATE and the system date?.....................153

42. Describe the difference between the DOWxx and DOUxx operations?.....................153

43. Define the purpose of the ITER operation?..153

44. List the steps/commands necessary to accomplish the following:............................153

Page 7 of 250

As400 Stuff

45. What is the purpose of the following?...154

FORDHDR1 IF E K DISK ORDHDRF KRENAMEORDHDRF1..154

In order to rename the record format of a data base file in a program, we can use
the above steps. Purpose of renaming is: If the record format name is similar in two
files and if both are used in a same program, the program will not compile. Hence
we have to rename either of the file..154

46. What is the purpose of the following C/COPY QRPGSRC,ORDERR.................154

47. What is the purpose of the following? A CSRLOC (F1ROW F1COL)...............154

48. What is the difference between SFLCLR and SFLINZ?..154

49. Define the purpose/use for SFLRNA?..154

50. How can you detect and handle a record lock situation?..154

51. How can you detect overflow for a print program that prints multiple lines per cycle?..........155

52. How would you design the process for a nightly, high volume check producing process that needs
to select only records that are flagged to be processed?..155

53. How would you join 3 separate fields, a first name, middle initial and last
name together as 1 field with proper spacing? You can describe in either RPG
and/or RPG ILE (Integrated Language Environment)..155

54. When PGMA calls PGMB for the first time PGMB executes the *INZSR. PGMB
uses the RETRN operation to return to PGMA. When PGMA call PGMB the second
time is the *INZSR executed?..155

55. Show 2 ways to convert a date from YYMMDD to MMDDYY (MULT operation
not acceptable)..155

57. Define the purpose of Factor 1 the Operation Code and *IN15 in following code HI LO EQ C
*YMD Test(D) yymmddDate 15...156

58. Describe the function of SETLL operation in RPG language?........................156

59. Describe the function of SETGT operation in RPG language?.......................156

61. Define a Job Queue?...157

62. Define a Output Queue?...157

63. What is the function of CPYSPLF command?..157

64. What is the function of CPYF command?...157

65. What is the function of CRTDUPOBJ command?...157

66. Define Subsystem?...157

Page 8 of 250

As400 Stuff

67. What are different types of Substems?...157

68. Define a Batch Job?..157

69. Describe about Query/400?...157

70. What is the CLP command to access a Query/400?...157

71. Purpose of Overrides?...157

72. Define Data Structure?..158

73. What is the purpose of Data structure?...158

74. List and explain the different type of data structures?...158

75. What is the purpose of DYNSLT keyword?..158

76. What is the difference between access path and Dynamic select?....................................159

77. Why would you prefer OPNQRYF than logical file?...159

78. What is the difference between Packed decimal and Zoned decimal?...............................159

79. What is default data type (if you define decimals '0') in Physical file?..............................159

80. What is default data type for the fields(sub fields) defined in data structures in RPG?...........159

81. When do you explicitly open files and close files in an RPG program?.............................159

82. What is Spool file, why is it required?...159

83. What is Job, What are the attributes of a Job?..159

84. What is Sub-System?..159

85. What is a Device file?...159

86. How can a data area be locked after being updated?..160

87. What are the types of object authorities?..160

88. What is the use of OVRPRTF?..160

89. What is Subfile?..160

90. What are all the contents of subfile?..160

92. Can more than one subfile record be displayed on one line?...160

93. How do you specify the number of records to roll in a subfile?.......................................160

94. How will you display a particular page in subfile?..160

95. How to pick up the changed records every time in a subfile after the first change made?.......160

96. What is the use of SFLEND keyword?...160

Page 9 of 250

As400 Stuff

97. How to toggle between single line and Multi - line display of a particular record in a subfile?.161

98. Explain the difference between defining Subfile and Message-subfile?.............................161

99. What are the different types of variables available in CL?...161

100. How do you pass parameters in CL?..161

101. What is difference between CAT, TCAT, BCAT?...161

102. What are the different types of messages in CL?..161

103. How to trap errors in CL?..161

104. What is the maximum length of a variable name in CL?..161

105. What are the limitations of CL (compare to RPG) ?..161

106. What is the use of Header Specification in RPG/400?...161

107. When will DUMP and DEBUG opcodes be ignored?..162

108. Specify different indicators used in RPG?..162

109. What are Control level indicators?...162

110. What is the use of E specification in RPG?..162

111. What is the use of L specs in RPG?..162

112. In which specification the report layout can be defined?..162

113. How many files can be defined in F specs?..162

114. How many printer files can be defined in F specs?...162

115. Give three main purposes of File specification?...162

116. How do you specify page overflow indicator for printer files in RPG?...........................162

117. What is a Primary File?..162

118. Can an indexed file be accessed in arrival sequence in RPG program?...........................162

119. What is a Program Described file in RPG?...162

120. What is externally described file?..162

121. Can you specify a display file to be used in the following modes Input, Output, or Combined
modes? 163

122. What is match field indicator?..163

123. What are all the compiler directive statements?...163

124. During execution, an RPG/400 program automatically follows a sequence of operations for
each record that is processed. The built-in program cycle includes the following logical steps..........163

Page 10 of 250

As400 Stuff

125. What are the different Opcodes available in RPG for Database access?.........................163

127. How do handle file exception/error..163

128. What is OPNQRYF, MONMSG commands...163

129. What are the uses of FACTOR1, FACTOR2 and RESULT field for the RPG
operation code PARM?...163

130. How will you find a string using PDM?..164

By using FNDSTRPDM..164

131. How do you read changed records backward in subfile?..............................164

NOT POSSIBLE..164

132. What is the difference between normal UPDDTA to PF and updating using DFU
program?..164

Both are same only difference is DFU allows you to add or change selected fields
...164

133. What is the syntax for PLIST?...164

*ENTRY PLIST PARM...164

134. Which are the String Manipulation Opcodes?...164

TESTN, SCAN, CHECK, CHECKR, SUBST & CAT...164

Sub Procedures:...164

1. Why Sub procedures are used?...164

2. Can you use a sub procedure in a sub procedure?..164

3. What are the specifications used in a sub procedure?.....................................164

4. How many ways a sub procedure can pass parameters?................................164

5. How do you invoke a stored procedure?..165

6. Is there any cycle code generated for the sub procedure?..............................165

7. What are the Important frequently used commands in ILERPG environment? 165

8. What are CODE/400 / Visual Age??..166

9. What are Main Procedure and a sub procedure?...167

Sub Files...168

1. Explain about sub files in AS/400?...168

2. Message subfile record format keywords..182

Page 11 of 250

As400 Stuff

3. How to create Message subfile?..182

4. What is active subfile?...187

CL Programming..187

1. CL commands?..187

2. Data types in CL?...192

3. String operation in CL?..193

4. How to set the cursor position in particular field in particular position?..........194

5. How will retrieve the data in data area?..194

6. Built in function in CL?...194

7. Define indicator in CL?...195

8. Message subfile in CL..195

9. CL processing commands & program control commands?..............................195

10. How to CL code has to change to use a call procedure?...............................195

11. What are various steps accessing data area in CL?......................................195

12. What is the equivalent command to setll *loval in CL?.................................195

13. Various types of message available in CL...196

14. What will MONMSG command in do?..197

15. What are the statements, which is not used in CLLE that is used in CLP?....198

16. How to create user define command?..198

17. Info...199

18. What's the difference between CHAIN and SETLL? Is there a performance
advantage?..200

19. How do I debug a remote (i.e. "batch") job from an interactive job?............201

20. What is the new E operation extender used for?..203

21. Why doesn't the %CHAR built-in function work with numeric values?..........203

22. How does the CONST keyword work with Procedure parameters?...............204

Built-in Functions...204

1. RPG IV - Built-in Functions...205

2. Figurative constants in RPGLE...213

Page 12 of 250

As400 Stuff

3. Explain ADDDUR, SUBDUR, EXTRCT and TEST?...213

4. Explain Compile time array, lookup, sort-a, x-foot, and Run time array?.........219

5. What is the different between READE and CHAIN Opcodes?...........................223

6. Explain Build in function in ILE?...223

@ References:..227

@ References:

Page 13 of 250

As400 Stuff

Basic

1. Define library?
✔ A Library is a collection of objects.
✔ Type *LIB that is used to group related object and to find objects by

name.
✔ A library is a directory to a group of objects.
✔ The number of objects contained in a library and the number of

libraries on the system are limited only by the amount of storage
available.

✔ All libraries are placed in the system library QSYS.
✔ Libraries provide a method for organizing objects.
✔ A library is an open-ended directory.
✔ A library can never become ‘FULL’ as if has no finite size.
✔ Libraries themselves are objects.
✔ A library contain the object name, type, and the address
✔ Library list

➢ System library- 15 (QSYSLIB)
QSYS

QHLPSYS

QUSRSYS

➢ Product library –2
➢ Current library –1
➢ User library - 25 (QUSRLIB)

QGPL

QTEMP

MYLIB

When you logon the first library to be load is QSYS. The system library
is loaded at the first time.

1. Define object?
✔ Everything that can be stored or retrieved on the system is known as

an “OBJECT”.
Objects exit to make users independent of the implementation used in
the machine.

✔ The create object instruction establish the object’s name and its type.

Page 14 of 250

As400 Stuff

✔ All objects are structured with a common object header, and a type
dependent functional portion.
✔ A user is not concerned with the space his object occupies.
✔ The system allocate space automatically
✔ WRKOBJPDM is used to display all object in such a library
✔ The library the object name and its type is Unique.

1. What is the difference between OPM, EPM and RPGLE?

OPM EPM RPGLE

Original program model
is the old RPG/400
system, which will not
allow a program type to
call another program
type. Like CL, RPG,
COBOL, PL/I, BASIC only
supported.

Extended program
model will support C,
PASCAL, FORTRAN and
other programming
concepts.

It supports mixed
program support in
which you can combine
any program with
another type of program.
It supports modularity,
copy book, better call
performance.

Version is V1R2 Version is V2R3

2. What are the disadvantages of using CL over RPG?

 We can able to read only records but we cannot able to write or update or
delete records.

 We can have only one file to be used in a CL program
 We cannot able to use printer files in CL
 We cannot able to use subfile in a CL program

1. How you can read and write single command in CL?
By using SNDRCVF command.

 Example

 Type: CLP

SKANDASAMO/CLP

 ADD

 *************** Beginning of data ********************************

0000.01 /*ADDING TWO NUMBERS */

Page 15 of 250

As400 Stuff

0001.00 PGM

0002.00 DCLF FILE (SKANDASAMO/CLPSCR) RCDFMT (SECLP)

0003.00 SNDRCVF RCDFMT (SECLP)

0004.00 CHGVAR VAR (&RES) VALUE (&NUM1 + &NUM2)

0005.00 SNDRCVF RCDFMT (SECLP)

0006.00 ENDPGM

 ****************** End of data **********************************

OUTPUT

FIRST NUMBER: 12

 SECOND NUMBER: 12

RESULT= 0000024

2. How to retrieve a date in CL?
By using RTVSYSVAL command we can get the system dates. For getting

date QDATE.

The various format of date are

*DMY, *MDY, *YMD, *YYMD, *JOL, *JOB

3. How to copy a record in existing object to another object?
By using CPYF command if you want to copy a data one position to another

position. We can give the records copying position starting and ending of the
records. We want particular records means. We can give the command in sq
position.

CPYF take F4

File name (source file) : PF01

Lib-name :SKANDASAMO

New file name :PF02

Lib-name :SKANDASAMO

Page 16 of 250

As400 Stuff

 :*FIRST

Replace :*ADD

 :*NO

 :*CHAR

 Start position :1000

End position :2000

Sql command :

FILED EMPNO

CONDITION *GT

VALUE 40

Record format mapping:*MAP(add field)

 +DROP (delete field)

4. How you will avoid multiple users updating the same records?
The displaying the records in the screen we will be getting the

timestamp along with the actual data. Store this in output data structure and
while updating check whether the previous time stamp is the same timestamp
before updating. If the record is updated by another user than the time stamp
will be changed and if it does not matches then throw the error message
‘Record is already updated by another user’ else update the records with current
time stamp.

Program 1
Store the time stamp and this time stamp will come as an input to the second
program

Program2
Here wstmst1 contains the input time stamp and check this matches with

the database. If matches update else send error message.

5. Explain WRKOBJPDM and DSPOBJD?

 WRKOBJPDM
If we want to list all the source PF or files of particular type the
WRKOBJPDM with file type as PF-SRC for source PF IOR *file for listing
all the files extra can be given.

Page 17 of 250

As400 Stuff

 DSPOBJD
If we know library name and object name and we want to know the
source PF where it is residing then DSPOBJD with option as *services
instead of basic will give the source PF name.

1. How to create RPG, RPGLE, CL, CLLE, PF, LF, PRN, and display file?

RPG -by using CRTRPGPGM command

RPGLE -by using CRTBNDRPG Command (or) 14

RPGLE -by using CRTRPGMOD (or) 15 /CRTPGM command

 CL -by using CRTCLPGM command

 CLLE -by using CRTBNDCL

 CLLE -by using CRTCLMOD/CRTPGM command

 PF -by using CRTPF command

 LF -by using CRTLF command

 PRN - by using CRTPRTF command

 DSPF -by using CRTDSPF command

2. What are the advantages of using AS/400 system?
AS/400 is designed and builds as a total system. This means that facilities

such as relational database and networking capability (and much more) are fully
integrated into the operating system and machine. The user communication with all
these functions through a single control language

 Layered machine architecture
 Object orientation
 Single-level storage
 Hierarchy of microprocessors
 Security levels

✔ Layered machine architecture
This insulates users from hardware characteristics. It enables
them to move to new hardware technology at any time, without
disrupting their application programs. We can able to change
any layer without affecting the other layer. If any problem
occurs in OS, then we can work with application program
independently and this is the major advantage of AS/400
system.

✔ Object orientation

Page 18 of 250

As400 Stuff

Every that can be stored or retrieved on the system is known as
an “objects”. Objects exist to make users independent of the internal
structure of the machine.

✔ Single- level storage
It provides contiguous memory between main storage and disk

storage. It provides authority to add any disk space so that user can
access it without any problem. There is no need for the user to think
where to store the application program.

✔ Hierarchy of microprocessors
Various types of microprocessors are used in AS/400. Each and

every microprocessor is allocated for specific purpose. If one chip is for
input operation and other for output then we can do both input and
output operation since both the microprocessor can perform
independently.

✔ Security levels
It will list the various security provided by the system.

➢ No security
➢ Password security
➢ Resource security
➢ OS security
➢ Certifiable security

1. What are the various types of Security in AS/400?
AS/400 is designed for business that requires levels of security ranging

from nothing at all to full government certifiable security. By setting a
system value, we can configure five increasing level of security.

 No security
 Password security
 Resource security
 OS security
 Certifiable security
When AS/400 is configured, three system values dealing with security need
to be specified. These values are QAUDJRL, QMAXSIGN & QSECURITY.

QSECURITY:

This system value determines the level of security enforcement. S/38
and the original AS/400 only had three of system security. At VIR3 of OS/400
the fourth level of security was added, and the fifth level of security was
added at V2R3. The valid values for QSECURITY are 10,20,30,40,50.

Page 19 of 250

As400 Stuff

QMAXSIGN:

This system value determines the maximum number of sign on
attempts allowed. If the number of unsuccessful attempts to sign on to the
system exceeds this number, the terminal or device that attempted the sign
on is varied off.

QAUDJRL:

AS/400 supports an optional security auditing function. If this function
is specified, certain security events are journal. The specific events that are
logged in the security audit journal are determined by the value specified in
the QAUDJRL system value and the level of system security specified.

Level 10: No security

System is shipped with minimum-security level and doesn’t
require any password to sign on. If user profile doesn’t exists with the same
name as the

User id the system creates the user profile with that name.

Level 20: Password security

Minimum security is active and password is required to sign on.
The user profile must already exist for the user before we can sign on the
system

Level 30: Resource security

Password security is active and user must specify given
authority to resources. This level is recommended because the system
doesn’t give the user authority to access the entire object on the system
after the user sign on.

Level 40: Operating system security

Password security, resource security and OS integrity are active.
User must be especially given authority to resources this level providing
more security than level 30.

➢ All attempts to access object using interfaces that are not
supported fail.

➢ Programs that contains restricted instructions will not compile

Page 20 of 250

As400 Stuff

➢ Users submitting jobs using the job description containing the user
profile name must have *USE authority to user profile.

Level 50: C2 level security

All the level 40 security attributes are included at level 50, and
in addition some of the interfaces are modified to meet the C2 standards.

1. Explain user profile and group profile?
✔ User profiles are used to identify users to the systems and verify

authorities on the system (DSPUSRPRF, CHGUSRPRF, EDTOBJAUT)
✔ User profiles tell the system who can sign on and what functions the

user can perform on the system on the system resources after signing
on.

✔ The security officer or security administrator can create it.
✔ The user profile defines the following capabilities for a particular user

➢ User class
➢ Object owned and authorized
➢ Authorization of objects
➢ Privileged instructions
➢ Password
➢ Current library
➢ Initial program and menu
➢ Delimited-capability user
➢ Limit device session
➢ Maximum storage allowed
➢ Priority limit
➢ Special environment

✔ User class
When identifying a user on the system you can specify the user

class in the user profile. AS/400 has five user classes that determine the
level of system’s access a user is permitted. The five user classes,
starting the highest level of access, are

✔ Security officer (*SECOFR)
✔ Security administrator (*SECADM)
✔ Programmer (*PGMR)
✔ System operator (*SYSOPR)
✔ User (*USER)

✔ Authorization of objects

Page 21 of 250

As400 Stuff

Object authority, or the right to user to use or control an object comes
in two categories.

➢ Object rights
➢ Data rights

✔ Object rights
Object rights are concerned with the object itself.

Object rights assign a user the following authority

➢ Operational rights (*OPER)
➢ Object management rights (*OBJMGT)
➢ Object existence rights (*OBJEXT)

 Operational right (*OPER)

The authority to use an object, looks at its description, and
restores it. A user must have operational rights to a program to
execute it.

 Object management rights (*OBJMGT)

The authority to grant and revoke and user rights move and
rename object, and members to database file.

 Object existence rights (*OBJEXT)

The authority to delete, free storage, save restore or transfer
ownership of an object.

✔ Data rights
Data rights apply to the data contained within the object.

Types of data rights

➢ Read (*READ)
The authority is to retrieve the contents of an object entry.

➢ Add (*ADD)
The authority is to add entries to an object. For example adding

records to a database file requires ADD right for the library.

➢ Update (*UPD)
The authority to change the entries in an object requires UPD

right for the file.

➢ Delete (*DLT)
The authority is to remove object in an object. For example

deleting a program from a library requires DLT right for the library.

Page 22 of 250

As400 Stuff

Deleting records for a database that requires DLT rights the database
file.

1. What is Lock? How you achieve in AS/400?
To give the access permission for database file. The Locks are provided by

AS/400 system itself.

Type of lock

 Share lock
The share locks only reading operation (PF file).

 Exclusive lock
The exclusive lock to perform insert, update, and delete operations.

1. How you will release the lock?

By using RCLRSC [Reclaim Resource] command we can release the resources
only. UNLOCK or CHAIN (N) command also helps to release the lock.

 By using WRKOBJLCK command and take F4.

2. Explain about RTNCSRLOC?

Type Y (Yes) in the Select parameters prompts to define parameters for the
RTNCSRLOC keyword on the Define Return Cursor Location display.

3. How you execute CL command in RPGLE?

By using QCMDEXC command we can execute CL command in RPGLE. Two
parameters will be called use in the CL command to be executed and second is the
length of the command.

4. What's new in V4R4 and RPG IV?

There are a few significant enhancements in RPG IV in OS/400 Version 4, Release 4.

The %CHAR built-in function has been fixed. It now functions like it
was supposed to in the first place. You can wrap a numeric value in %CHAR
and a nicely edited character form of the number is returned. The edited
form includes the decimal, trimmed off leading blanks, and a negative sign.

The FOR loop provide free format version of DO operation code. With
the FOR operation, you can begin a loop operation and continue iterating

Page 23 of 250

As400 Stuff

through the loop until a variable equals a limit value. The syntax for the FOR
operation is enhanced with the TO, BY and DOWNTO keywords. The TO
operation indicators the upper limit for the looping, while the BY keyword
identifies the increment value for the loop counter. Alternatively, you can
specify the DOWNTO keyword to loop backwards from a large value to a
small value.

The OPENOPT keyword is added to the Header specification. This
keyword can be used along with its one and only keyword *INZOFL to cause
overflow indicators to be set off when their corresponding printer file is
closed and then re-opened during the program.

In subroutines, the LEAVESR operation can now be used to exit a
subroutine immediately. Effectively this is a "glorified goto" operation that
branches to the ENDSR statement of a subroutine.

5. Can you clear up the confusion in the different releases of RPG IV
and OS/400 and ILE?

RPG IV is the next generation of the RPG language. RPG III is the original
version of AS/400 RPG/400. The name "AS/400 RPG/400" is that given to the IBM
compiler package for distribution on the AS/400. This compiler package compiles
various versions of RPG, including RPGII and at least two releases of RPGIII.As of
OS/400 Version 3 release 1, IBM changed the name of this compiler package to
"AS/400 ILE RPG/400". The reason for this name change was to identify that fact
that the compile now includes a version of RPG that targets the Integrated
Language Environment (ILE), which is RPG IV.ILE was first shipped in OS/400
Version 2, Release 3. However, only the C language compiler produced code that
targeted this environment.

First, a word about ILE, ILE is the new, "native" runtime environment for
Programs, on the AS/400. Under OS/400 Version 2 Release 3, IBM introduced a new
program model. This basically means that new features and interfaces became
available. However, IBM did not just port some runtime environment to the OS/400
operating system, it actually re-wrote code, and wrote new code that, essentially,
changed the way OS/400 works. This new code provides support for a mixed set of
high-level languages. Previously, RPG and CL had their own little runtime
environment, COBOL had its own; C had its own, and so on. Under ILE, all
programming languages run in ILE. The same "environment" is used for COBOL, C,
RPG and CL. However, to take advantage of ILE, new compilers needed to be
created. As for RPG, rather than convert the existing RPGII and RPGIII compilers,
IBM, who was designing a new version of RPG anyway, decided to target ILE with
the new compiler. This would simultaneously provide a new version of RPG and an
ILE targeted compiler.

Page 24 of 250

As400 Stuff

Names Are Important

A good friend of mine once said, "Names are important" in the programming
world. If a field is called "Rhinoceros", does it represent its use or purpose? Okay, so
perhaps in traditional RPG "Iguana" is a better choice for this example. (Shorter
name) During the development of RPG IV, two distinct issues arose. First, the
internal name for RPG IV was "ILE RPG". This was not a code name, but rather the
name IBM used to refer to the new compiler. After all, it was targeting ILE; why not
refer to it as "ILE RPG"? Second, the re-architecture of RPG came into question.
Unfortunately, the internal name "ILE RPG" began to be leaked out to the public.
Several magazine writers and IBMers not involved in the development of RPG IV
continued to use the term "ILE RPG" when referring to RPG IV. I suppose these
people still refer to the AS/400 as SilverLake or perhaps even Olympic.

Then when IBM announced the compiler package or product name as
"AS/400 ILE RPG/400" it only added to the confusion. IBM dropped the ball when
promoting the RPG IV name. They are, after all, set up to market their products with
their product names. The name of one programming language included in a product
that contains nearly seven full compilers isn't high priority.

RPG IV is the version of RPG that targets ILE. OS/400 V3R1 compatible RPG IV
can also target what is now called "the original program model" or simply OPM.
OPM is just a name that has been given to the original runtime environment of RPG
and CL under OS/400. This is the environment in which RPGIII and CL run. Under
ILE, however, the original native environment is emulated, that is, ILE isn't an
environment at all, it is native OS/400, whereas, OPM is now an environment under
ILE. Some very clever programming and design went into this, don't you think? Not
very many other operating systems, if any, provide this kind of continuity.

RPG IV -- Release what?

RPG IV was first shipped with OS/400 Version 3, Release 1. This is now
referred to as RPG IV release 1. But don't worry about remembering releases of RPG
IV. Under OS/400 Version 3, Release 6, IBM enhanced RPG with procedures,
many more built-in functions, and several new data types. This is referred to as RPG
IV release 2. Then, OS/400 Version 3, Release 2 was announced. It brought the
original release of RPG IV (on the CISC boxes) up to the same level as RPG IV under
V3R6. Are you confused yet? Me too! Under OS/400 Version 3, Release 7, IBM
added a couple of enhancements, most notably they increased the length of a field
name to a number so large not even magazine authors that don't write real-world
code could complain about it anymore. They also added one or two new data types,
rounding out RPG IV so that it supports all AS/400 data types, except variable
length fields. This version of RPG IV is known as RPG IV Release 3.

The following table identifies the current releases of RPG IV. Note that RPG IV
releases do not necessarily coincide with releases of the operating system.

Page 25 of 250

As400 Stuff

RPG IV
Release

OS/400 Version/Release CISC or RISC

1 V3 R1 CISC

2 V3 R6 RISC

2 V3 R2 CISC

3 V3 R7 RISC

4 V4 R2 RISC

4 V3 R5 (speculation)
See note 1

CISC

5 V4 R3 RISC

5 V4 R4 (February 1999) RISC

6 V4 R5 (Summer 2000) RISC

NOTE 1: It is speculated that IBM may ship a final "clean up" release of OS/400 for
CISC that would included a large level of compatibility with OS/400 V4 R5.

The release levels of RPG IV are only important if you want to keep track of
that kind of thing. One disappointing issue is that unless you stay on the most
current release of OS/400, you don't get all the cool new features in RPG IV. Even if
you stay current, you can't target prior releases if you use any of the new features.
In fact, even if you use a new feature that doesn't depend on an operating system
enhancement, it can't be used for back releases. This is because of the way the
TGTRLS (target release) feature has been implemented. Basically, if you're on V4
R2 and you do a TGTRLS(V3R2M0) the compiler calls the actual compiler for V3 R2.
It doesn't have a built-in syntax checker that says "This feature requires an OS/400
upgrade so don't allow it, or this one is okay so accept it." It is calling the same
"binary" compiler code that is on any old V3 R2 system. This means, for example,

Page 26 of 250

As400 Stuff

that if you want to take advantage of the new compiler directives, but you often
have to target a prior release, you can’t use those directives. For example, /IF
DEFINED does nothing for the executable code that's generated, but is not
supported when TGTRLS(V3R2M0) is specified. ;(Bummer!)

So now we know about RPG IV release levels and how the term "ILE RPG" got
into our vocabulary. So let's clear up another term, the name of the RPG language.
The big one is the term "RPG/400". There is not programming language called
"RPG/400". The language most often called "RPG/400" is RPGIII. However, back in
the System/38 days, the System/38 RPG language was called RPGIII. When the
AS/400 was announced, programmers wanted to give themselves an advantage on
their résumé. So they began calling AS/400 RPGIII, "RPG/400". Then to make matter
worse, when RPG IV was announced, programmers thought that the number "IV" in
"RPG IV" was less than the "400" in "RPG/400". So they decided to call RPG IV, "ILE
RPG". Well let's set the record straight. The table below lists the RPG language
names, their incorrect name, and the proper name.

Commonly
used Wrong
Name

Formal Name Proper (correct)
Name

RPG/36 System/36-compatible RPGII RPGII

RPG/38 System/38-compatible
RPGIII

RPGIII

RPG/400 RPGIII RPGIII

ILE RPG RPG IV RPG IV

ILE Concepts

1. Integrated Language Environment (ILE)

ILE is an architectural change to language compilers and the runtime
characteristics of AS/400 programs. It is an extension to the architecture which
means that your existing programs continue to run without changing and
recompiling. ILE is available with Version 2 Release 3 of OS/400.

Page 27 of 250

As400 Stuff

Integrated Language Environment is tightly integrated into the Operating
System/400. The key benefits for the new ILE environment are:

• Language Integration: Application programs are developed using the
language mix best suited to perform each required function.

• Reusability: Code from supported languages is divided into smaller, reusable,
more logical modules that compile faster and require less maintenance over
their life.
• Performance: Capability is provided to optimize code in compute-intensive

applications and to reduce the time to perform inter-program calls.
Integrated Language Environment increases developer productivity by providing
the capability to divide code into smaller, more logical units that compile faster.

The system binder combines the compiled modules to create the application
program. In addition, the separation of compilation and bind steps provides more
flexibility packaging the application.

The new source level debug tool that supports the ILE languages provides
enhanced capability over the system debugger with the new feature to debug at
the source or listing level of the program. Step, breakpoint, and conditional
breakpoint functions have been provided. Expressions are entered and evaluated
using the syntax of the programming language being debugged. The current
system debug facility remains unchanged for programs developed outside ILE.

ILE offers numerous benefits not found on previous releases of the AS/400 system.
These benefits include:

1. Better call performance
2. Modularity
3. Multiple-language integration
4. Enhancements to the ILE compilers
5. Reusable components
6. Control over application run-time environment
7. Code optimization
8. Tool availability
9. Foundation for the future

In addition, ILE offers common run-time routines used by the ILE-conforming
languages. Many of the application program interfaces (APIs) are also provided as
bind able (service) programs. This allows your applications to use APIs and to get
faster ILE call performance. These off-the-shelf components provide such services
as:

Page 28 of 250

As400 Stuff

 Date manipulation

Message handling

Math routines

Activation Groups

Service Programs

1. Better Call Performance

 An ILE compiler does not produce a program that can be run. Instead, it produces
a module object (*MODULE) that can be combined, or bound, with other modules to
form a single run able unit, or program. ILE programs are called just as you call
programs in your current applications.

 A benefit of this binding process is that it helps to reduce the overhead associated
with calling programs by reducing the number of external calls.

Before ILE, only dynamic (or external) program calls were available to the
application programmer. With ILE, two kinds of calls are available:

 Dynamic (or external program) calls [E.g.: Program Calls]

 Static (or bound) calls [E.g.: Service Program Calls]

The performance of dynamic calls in ILE programs is fairly close to existing call
performance. However, bound calls offer better performance than dynamic calls.
Thus, the binding capability and the improved call performance that results may
encourage you to develop your applications with a more modular design.

2. Modularity

 A more modular approach to programming provides numerous benefits to you,
including:

• Faster compilation because the units of code to compile are smaller
(Especially recompiling during development).

• Better programmer work load distribution.
• Opportunities to both purchase and sell individual modules of code.
• Increased reusability: Modules written for a specific function can be bound

into several program objects.
• Simplified maintenance: Maintenance may be required in only a single

module.

3. Multiple-Language Integration

Page 29 of 250

As400 Stuff

With your current application, you can mix different language programs, such as
RPG, COBOL, and C. However, to access code written in another language, your
current application must perform a dynamic call to a separate program. The
performance cost of the dynamic call to a program and the inconsistencies between
language behaviors sometimes complicate the mixing of languages.

With ILE, modules written in any ILE language can be bound to modules written in
the same or any other ILE language. For example, a module of code written in ILE
C/400 (perhaps a floating-point calculation) can be bound with modules written in
ILE RPG/400, ILE COBOL/400, ILE C/400, or ILE CL.

This produces a better performing, and more easily managed application. In
addition, you can acquire modules written in a variety of languages, without
needing to produce the code yourself. The APIs that IBM provides for ILE are just
the beginning. Vendors have more freedom to sell (and application programmers
to buy) libraries of routines for any commonly used function, such as tax
calculations. They can be written in any language and can be bound for better
performance.

4. Enhancements to the ILE Compilers

The ILE compilers have some significant new function included as part of the
language. This is particularly true for ILE RPG/400, which is based on the RPG IV
language definition. Many long-standing requests from RPG programmers have
been addressed in the ILE RPG/400 compiler, including the following:

• 10-character field names
• Free-form logical and math expressions
• Date and time data types and operations
• External data items (data export)
• Uppercase and lowercase source
• File-level field prefix support
• Pointers

 For many programmers, the primary motivation for moving to ILE is to get access
to the function that ILE language support provides.

5. Reusable components

ILE allows you to select packages of routines that can be blended into your own
programs. Routines written in any ILE language can be used by all AS/400 ILE
compiler users. The fact that programmers can write in the language of their choice
ensures you the widest possible selection of routines.

Page 30 of 250

As400 Stuff

The same mechanisms that IBM and other vendors use to deliver these packages to
you are available for you to use in your own applications. Your installation can
develop its own set of standard routines, and do so in any language it chooses.

Not only can you use off-the-shelf routines in your own applications. You can also
develop routines in the ILE language of your choice and market them to users of
any ILE language.

6. Control over Application Run-Time Environment

ILE allows you to use better control over your application and the resources it uses.
You can specify that a given ILE program run in a particular area within a job. This
area within a job is called an activation group. You can assign a name to the
activation group within the job. Then, ILE programs and service programs can be
created to use the named activation group. Thus, you can use activation groups to
set up logical boundaries within the job to separate the applications.

Within these boundaries, an activation group has exclusive use of the resource,
such as open data paths for the files used in the application.

Using activation groups to isolate applications can also make it easier to end an
application in a job. It aids in cleaning up its resources (such as open files and
active programs) without disturbing resources associated with other applications
active in the job. RPG programmers might think of this technique as a kind of
application-level LR indicator. For example, it is a way to end an entire application
rather than ending one program at a time.

7. Code Optimization

The new ILE compilers and the associated OS/400 translator have more advanced
optimization techniques built into them. In some cases, these new levels of
optimization may lead to improved performance of existing code. At compilation
time, the programmer can select the desired level of optimization for each piece of
code.

8. Tool Availability

The majority of tools for developers in the computer industry today are written in
the C language. With ILE binding capability and improved optimization, these C
language applications run faster. In addition, they perform better than they did
with the previous C/400 compiler.

 Therefore, we anticipate that many tool vendors will begin to add their tools to the
AS/400 to attract a new marketplace for their products.

Page 31 of 250

As400 Stuff

Making use of the C language offers you a greater choice of:

• CASE tools, Fourth-generation languages (4GLs), Editors, Debuggers.

9. Foundation for the Future

In addition to the increased opportunity to optimize your applications with the
current ILE compilers, you can look forward to even more significant
enhancements. The move toward object-oriented programming languages and
visual programming tools increases the need for the capabilities provided by ILE.

 Applications constructed of large numbers of small, modularized, reusable
components that efficiently transfer control among themselves offer you maximum
flexibility. You can use them multiple ways in multiple applications.

1. A procedure is a set of self-contained high-level language statements that
performs a particular task and then returns to the caller. For example, an ILE C/400
function is an ILE procedure.

2. A sub procedure is a procedure specified after the main source section. It can
only be called using a bound call. Sub procedures differ from main procedures in
several respects, the main difference being that sub procedures do not (and
cannot) use the RPG cycle while running.

3. A module object is a non runable object that is the output of an ILE compiler. A
module object is represented to the system by the symbol *MODULE. A module
object is the basic building block for creating run able ILE objects.

4. All ILE programs and service programs are activated within a substructure of a
job called an activation group. This substructure contains the resources
necessary to run the programs.

5. A service program is a collection of runable procedures and available data
items easily and directly accessible by other ILE programs or service programs. In
many respects, a service program is similar to a subroutine library or procedure
library.

Service programs provide common services that other ILE objects may need; hence
the name service program. An example of set of service programs pro-vided by
OS/400 is the run-time procedures for a language. These run-time procedures often
include such items as mathematical procedures and common input/output
procedures.

6. A binding directory contains the names of modules and service programs that
you may need when creating an ILE program or service program. Modules or
service programs listed in a binding directory are used only if they provide an

Page 32 of 250

As400 Stuff

export that can satisfy any currently unresolved import requests. A binding
directory is a system object that is identified to the system by the symbol *BNDDIR.

1. What is a Module?

Modules are objects of *MODULE type that are created by the compiler when
the create RPG Module (CRTRPGMOD) command is performed. A module can be
composed of a main procedure (also referred to as main program) and/or one or
more sub procedures.

The term “procedure” often designates a sub procedure or a main procedure. A
module is sometimes called “compilation unit” as it comes from compilation of
one source member. Modules are not executable; they only serve as building
blocks for program creation.

 The process of program creation is called binding. Bound programs are
executable objects of *PGM type. To bind modules into a program, the Create
Program (CRTPGM) command is used. If an RPG IV program does not call sub
procedures, or external modules, the Create Bound RPG Program (CRTBNDRPG)
command will do for both compilation and binding. This is the case, for example,
of an RPG IV program resulting from converting an RPG III program by the
CVTRPGSRC command.

A module is a non-executable program and it contains one or more procedures.
If you have modules without procedure then it means that it is having only one
default procedure and in case we can use CALLB. We are creating a RPGLE
module by CRTRPGMOD and a CL module by CRTCLMOD commands.

2. What is a Service Program?

If you have procedures that are called by more than one program, you could
bind them individually to each of the programs. In such a case, they would
occupy space in each program and would be difficult to maintain. If you group
the procedures in a service program instead, the procedures occur only once
and can be easily maintained. Service programs are objects of *SRVPGM type
which are created by the Create Service Program (CRTSRVPGM) command. A
service program is simply a collection of modules especially those containing
sub procedures.

Service programs cannot be directly called; however, the procedures contained
in it may be called by ILE programs.

Service programs are built by binding, much like programs, but they need to be
further bound to a program before they are used. This is done by the CRTPGM
command. Service programs can also be bound to other service programs. The
top service program in such a group is eventually bound to a program using the
CRTPGM command.

Page 33 of 250

As400 Stuff

3. What is a binding Directory?

Binding directories are objects of *BNDDIR type. Binding directories can be used as
an additional source of exports. A binding directory contains a list of modules and
service programs that are candidates for automatic binding. Not all items of the list
in the binding directory are necessarily bound. Only those required by imports that
cannot otherwise be resolved are bound. Modules and service programs listed in a
binding directory often contain standard procedures, for example mathematical
functions or other system procedures. We can create our own binding directories
using special CL command CRTBNDDIR.

4. Why Import and Export?

A service program makes its own modules and procedures available to external
users through a mechanism called export. The external users are modules and sub
procedures in external programs and other service programs that use (call) the
modules and sub procedures of the service program to call them. The external
users are also called “public” or “clients”.

Main procedures of modules comprising the service program are exported
automatically (implicitly), the programmer do not need to use any special
specifications to make a main procedure available to external users. A service
program exports its own sub procedures by specifying the EXPORT keyword in the
sub procedure definition. However, in order to bring this specification in effect, the
binding command (CRTSRVPGM) specifies which of the exported procedures are
actually made available to external users. Besides modules and sub procedures,
variables may be exported (by specifying the EXPORT keyword). Exported modules,
sub procedures and variables are collectively called exports. Exports are used in
other procedures where they are referred to. The references are also called imports
as opposed to the exports that are sometimes called definitions.

5. What is Activation Group?

Activation groups are temporary storage structures placed inside jobs (which
themselves are also temporary structures). There are three types of activation
groups:

• Default

• named

• New

Page 34 of 250

As400 Stuff

Default activation groups exist automatically and are never deleted. There are two
default activation groups. Many system programs run in the default activation
group 1. RPG IV programs created with the parameter DFTACTGRP(*YES) of the
CRTBNDRPG command run in the default activation group.

The other types of activation groups are specified by the parameter ACTGRP in
program and service program creation commands - CRTPGM and CRTSRVPGM.
Thus, the type of an activation group is determined by the program or service
program at creation time.

An activation group is created when the program is started. An activation group
may include:

Static and automatic variables

The variables types of programs running in the activation group: Static variables
are those defined in a main procedure. They come from external sources such as
DDS or SQL specifications, or they are defined as RPG variables (fields, indicators).
One more place you will find static variables is as local variables in sub procedures
declared with the STATIC keyword. Automatic variables are local variables defined
in sub procedures.

Open data paths (ODP)

ODP are temporary objects representing open files to programs. Data buffer and
pointer to a record are part of the ODP.

Dynamically allocated storage

Temporary object created by the ALLOC operation in the RPG IV program.

Error handling routines

System or user programs (modules) handling error messages. Programmers can
write their own modules to handle error messages coming from any procedure in
the call stack, no matter in which programming language the procedure is written.
Notice that the “program stack” has been renamed to “call stack”.

6. Name Some ILE API’s? And tell something about them?

The List Module Information (QBNLMODI) API lists information about modules. The
information is placed in a user space specified by you. This API is similar to the
Display Module (DSPMOD) command. You can use the QBNLMODI API to:

• List the symbols defined that can be exported to other modules

• List the symbols that are defined external to the module

Page 35 of 250

As400 Stuff

• List procedure names and their type

• List objects that are referenced when the module is bound into an ILE program or
service program

• List copyright information

2. The List Service Program Information (QBNLSPGM) API gives information about
service programs, similar to the Display Service Program (DSPSRVPGM) command.
The information is placed in a user space specified by you. You can use the
QBNLSPGM API to:

• List modules bound into a service program

• List service programs bound to a service program

• List data items exported to the activation group

• List data item imports that are resolved by weak exports that were exported to
the activation group

• List copyrights of a service program

• List procedure export information of a service program

• List data export information of a service program

• List signatures of a service program

3. The List ILE Program Information (QBNLPGMI) API gives information about ILE
programs, similar to the Display Program (DSPPGM) command. The information is
placed in a user space specified by you. You can use the QBNLPGMI API to:

• List modules bound into an ILE program

• List service programs bound to an ILE program

• List data items exported to the activation group

• List data item imports that are resolved by weak exports that were exported to
the activation group

• List copyrights of an ILE program

You can, for example, list signatures of service programs bound in a program using
the QBNLSPGM API to get the "old" signatures. You can also list all "new"
signatures of these service programs using the QBNLPGMI API and compare the two
lists if they match. If there is some mismatch, you can trigger a new binding of the

Page 36 of 250

As400 Stuff

program (by performing the CRTPGM command). Be prepared to inspect lists of lists
in some cases because the information retrieved by these APIs is organized
hierarchically.

7. What are activation groups?

Activation group is the environment where the ILE jobs are executed. You can
specify the activation group in CRTPGM or CRTSRVPGM command.
You cannot create the activation group by command CRTACTGRP.

*ENTMOD: The program entry procedure module (ENTMOD parameter) is checked.
If the module attribute is RPGLE, CBLLE, or CLLE, then ACTGRP is QILE or
QILETS.QILE is used when STGMDL (*SNGLVL) is specified, and QILETS is used when
STGMDL (*TERASPACE) is specified.

*NEW : When the program gets called, a new activation group is created.

*CALLER: When the program gets called, the program is activated into the caller's
activation group.

Name : Specify the name of the activation group to be used when this program is
called.

8. How do I create and use a service program
http://faq.midrange.com/data/cache/614.html

A small sample service program, with source, and instructions for how to create and
use it is given here.

a. Create the 6 source members below, changing MYLIB to your library name in the
entire source.
b. Use CRTRPGMOD to create the two srvpgm modules SRVSAMP1 and SRVSAMP2.
c. Use CRTCLPGM to create the CL program SRVSAMPCRT.
d. Call SRVSAMPCRT to create the srvpgm MYLIB/SRVSAMP.
e. Create a binding directory
 ===> CRTBNDDIR MYLIB/SRVSAMPBND
f. Add your service program to the binding directory
 ===> ADDBNDDIRE MYLIB/SRVSAMPBND OBJ((MYLIB/SRVSAMP *SRVPGM))
g. Create your test program. Since it has the BNDDIR keyword in the
 H spec, it will automatically find your service program.
 ===> CRTBNDRPG MYLIB/SRVSAMPTST SRCFILE(MYLIB/QRPGLESRC)
h. Try calling your test program. Enter a value like 06.03.31 or 060331
i. Try adding a new procedure to module SRVSAMP1.

Page 37 of 250

http://faq.midrange.com/data/cache/614.html

As400 Stuff

 - say a procedure to get a numeric value similar to get Answer
 - add the prototype to SRVSAMPPR
 - code the procedure in SRVSAMP1
 - add an EXPORT line to QSRVSRC SRVSAMPBND
 - call your CL to create the srvpgm again
 - reclaim the activation group that your test program runs in
 (Use DSPPGM to see what activation group it is)
 - call your test program again to make sure it still runs ok with the new version of
the service program
j. Add some code to your test program to call the new procedure, and recompile
and test.

Source files:

1. Binder source MYLIB/QSRVSRC SRVSAMPBND type BND:
 /*---------------------------------------*/
 /* Rules: */
 /* 1. Never change the order of exports */
 /* 2. Add new exports at the end */
 /*---------------------------------------*/
 strpgmexp signature('SRVSAMP')
 export symbol('getAnswer') /* 1 */
 export symbol('chkDate') /* 2 */
 endpgmexp

2. CL to create service program MYLIB/QCLSRC SRVSAMPCRT type CLP:
 crtsrvpgm mylib/srvsamp +
 module(mylib/srvsamp1 +
 mylib/srvsamp2) +
 srcfile(mylib/qsrvsrc) srcmbr(srvsampbnd)

3. RPG prototype source MYLIB/QRPGLESRC SRVSAMPPR type RPGLE:
 /if defined(SRVSAMPPR_COPIED)
 /eof
 /endif
 /define SRVSAMPPR_COPIED
 D getAnswer pr 25a varying
 D extproc('getAnswer')
 D question 25a const varying

 D chkDate pr n
 D extproc('chkDate')
 D input 10a const varying
 D output d

Page 38 of 250

As400 Stuff

 D formatParm 10a const varying
 D options(*nopass)

4. RPG test program source MYLIB/QRPGLESRC SRVSAMPTST type RPGLE:
 H dftactgrp(*no) bnddir('MYLIB/SRVSAMPBND')
 /copy srvsamppr
 D ans s 10a varying
 D date s d
 D ok s n

 /free
 ans = getAnswer ('Give a date in ymd format');
 ok = chkDate (ans : date : '*YMD');
 if ok;
 dsply ('That was ok, date was ' + %char(date));
 else;
 dsply 'Oops, was not valid';
 endif;
 *inlr = '1';

5. RPG srvpgm module 1 MYLIB/QRPGLESRC SRVSAMP1 type RPGLE:
 H nomain
 /copy srvsamppr

 P getAnswer b export
 D getAnswer pi 25a varying
 D question 25a const varying
 D answer s 25a varying
 /free
 dsply question ' ' answer;
 return answer;
 /end-free
 P getAnswer e

6. RPG srvpgm module 2 MYLIB/QRPGLESRC SRVSAMP2 type RPGLE:
 H nomain
 /copy srvsamppr

 P chkDate b export
 D chkDate pi n
 D input 10a const varying
 D output d
 D formatParm 10a const varying
 D options(*nopass)

Page 39 of 250

As400 Stuff

 D format s 10a varying inz('*ISO')
 D sep s 1a
 D sepPos s 10i 0
 D haveSep s n
 D standardSep s 10a varying
 /free
 // check for optional parameter
 if %parms > 2;
 format = formatParm;
 endif;

 // check for separators
 sepPos = %check('0123456789' : input);
 if sepPos > 0;
 sep = %subst(input : sepPos : 1);
 haveSep = *on;
 endif;

 if format = '*ISO';
 if haveSep;
 standardSep = %xlate(sep:'-':input);
 output = %date(standardSep : *iso);
 else;
 output = %date(input : *iso0);
 endif;

 elseif format = '*YMD';
 if haveSep;
 standardSep = %xlate(sep:'/':input);
 output = %date(standardSep : *ymd/);
 else;
 output = %date(input : *ymd0);
 endif;
 endif;

 return *on; // it was ok

 begsr *pssr;
 return *off; // some error occurred
 endsr;
 /end-free
 P chkDate e

Page 40 of 250

As400 Stuff

9. Modules - How to write and reuse them

Here we explore the concept of modules which helps us to reuse the procedures
without applying the service program concept.

Name of the program that binds all the modules is TSTMOD. There won’t be any
source for TSTMOD before CRTPGM. After program creation if you debug this
program and see it will have the source of the entry module (here PGMENTMOD)

There are three modules PGMMOD1, PGMMOD2 and PGMENTMOD where
PGMENTMOD is the entry module (it contains the code to call the exportable
procedures present in PGMMOD1 and PGMMOD2).

1. First create all the modules using option 15 like this.
CRTRPGMOD MODULE (SHAILESH/PGMMOD1) SRCFILE (SHAILESH/TESTPGMS)
CRTRPGMOD MODULE (SHAILESH/PGMMOD2) SRCFILE (SHAILESH/TESTPGMS)
CRTRPGMOD MODULE (SHAILESH/PGMENTMOD) SRCFILE

(SHAILESH/TESTPGMS)

2. Then create the program (CRTPGM) by binding all the modules like this.
Program > TSTMOD
 Library > SHAILESH
Module > PGMMOD1
 Library > SHAILESH
 > PGMMOD2
 > SHAILESH
 + for more values > PGMENTMOD
 > SHAILESH
Text 'description' *ENTMODTXT
 Additional Parameters
Program entry procedure module > PGMENTMOD
 Library > SHAILESH

3. Now call the created program in debug mode like this.
STRDBG PGM(SHAILESH/TSTMOD) UPDPROD(*YES) OPMSRC(*YES)
CALL PGM(SHAILESH/TSTMOD)

Source code:

PGMMOD1:

D ADD PR
D VAR1 5S 0 VALUE
D VAR2 5S 0 VALUE

Page 41 of 250

As400 Stuff

D SUM 6S 0

C EVAL *INLR = *ON

P ADD B EXPORT
D ADD PI
D VAR1 5S 0 VALUE
D VAR2 5S 0 VALUE
D SUM 6S 0

C EVAL SUM = VAR1 + VAR2
P ADD E

PGMMOD2:

D SUB PR
D VAR1 5S 0 VALUE
D VAR2 5S 0 VALUE
D DIFF 5S 0

C EVAL *INLR = *ON

P SUB B EXPORT
D SUB PI
D VAR1 5S 0 VALUE
D VAR2 5S 0 VALUE
D DIFF 5S 0

C EVAL DIFF = VAR1 - VAR2
P SUB E

PGMENTMOD:

D VAL1 S 5S 0 INZ(99999)
D VAL2 S 5S 0 INZ(99999)
D TOTAL S 6S 0 INZ
D BALANCE S 5S 0 INZ

D ADD PR
D VAL1 5S 0 VALUE
D VAL2 5S 0 VALUE
D TOTAL 6S 0

D SUB PR

Page 42 of 250

As400 Stuff

D VAL1 5S 0 VALUE
D VAL2 5S 0 VALUE
D BALANCE 5S 0

C TOTAL DSPLY
C CALLP ADD(VAL1: VAL2: TOTAL)
C TOTAL DSPLY
C BALANCE DSPLY
C CALLP SUB(VAL1: VAL2: BALANCE)
C BALANCE DSPLY

C EVAL *INLR = *ON

1. What are the ILE RPG coding programming considerations?

 Coding Considerations

This section presents some considerations that you should be aware of before you
begin designing applications with multiple-procedure modules. The items are
grouped into the following categories:

 * General

 * Program Creation

 * Main Procedures

 * Sub procedures

1. General Considerations

* When coding a module with multiple procedures, you will want to make use
of /COPY files, primarily to contain any prototypes that your application may
require. If you are creating a service program, you will need to provide both
the service program and the prototypes, if any.

* Maintenance of the application means ensuring that each component is at
the most current level and that any changes do not affect the different
pieces. You may want to consider using a tool such as Application
Development Manager to maintain your applications.

For example, suppose that another programmer makes a change to the
/COPY file that contains the prototypes. When you request a rebuild of your
application, any module or program that makes use of the /COPY file will be
recompiled automatically. You will find out quickly if the changes to the
/COPY file affect the calls or procedure interfaces in your application. If there

Page 43 of 250

As400 Stuff

are compilation errors, you can then decide whether to accept the change to
prototypes to avoid these errors, or whether to change the call interface.

2. Program Creation

* If you specify that a module does not have a main procedure then you
cannot use the CRTBNDRPG command to create the program. (A module
does not have a main procedure if the NOMAIN keyword is specified on a
control specification.)

This is because the CRTBNDRPG command requires that the module contain
a program entry procedure and only a main procedure can be a program
entry procedure.

* Similarly, when using CRTPGM to create the program, keep in mind that a

NOMAIN module cannot be an entry module since it does not have a program
entry procedure.

* A program that is created to run in the default OPM activation group (by
specifying

DFTACTGRP(*YES) on the CRTBNDRPG command) cannot contain bound
procedure calls.

3. Main Procedure Considerations

* Because the main procedure is the only procedure with a complete set of
specifications available (except P specification), it should be used to set up
the environment of all procedures in the module.

* A main procedure is always exported, which means that other procedures
in the program can call the main procedure by using bound calls.

* The call interface of a main procedure can be defined in one of two ways:

1. Using a prototype and procedure interface

2. Using an *ENTRY PLIST without a prototype

* The functionality of an *ENTRY PLIST is similar to a prototyped call
interface.

However, a prototyped call interface is much more robust since it provides
parameter checking at compile time. If you prototype the main procedure,
then you specify how it is to be called by specifying either the EXTPROC or
EXTPGM keyword on the prototype definition. If EXTPGM is specified, then an

Page 44 of 250

As400 Stuff

external program call is used; if EXTPROC is specified or if neither keyword is
specified, it will be called by using a procedure call.

* You cannot define return values for a main procedure, nor can you specify
that its parameters be passed by value.

4. Sub procedure Considerations

* Any of the calculation operations may be coded in a sub procedure.
However, all files must be defined globally, so all input and output
specifications must be defined in the main source section. Similarly, all data
areas must be defined in the main procedure, although they can be used in a
sub procedure.

* The control specification can only be coded in the main source section since
it controls the entire module.

* A sub procedure can be called recursively. Each recursive call causes a new
invocation of the procedure to be placed on the call stack. The new
invocation has new storage for all data items in automatic storage, and that
storage is unavailable to other invocations because it is local. (A data item
that is defined in a sub procedure uses automatic storage unless the STATIC
keyword is specified for the definition.)

2. What Opcodes are added in ILE?

ADDDUR, SUBDUR, EVAL

3. What are the behavioral differences b/w OPM RPG/400 and ILE?

Compared to OPM, ILE provides RPG users with improvements or enhancements in
the following areas of application development:

 * Program creation

 * Program management

 * Program call

 * Source debugging

 * Bindable application program interfaces (APIs)

Each of the above areas is explained briefly in the following paragraphs and
discussed further in the following chapters.

4. ILE advantages over RPG?
✔ Better call performance
✔ Modularity

Page 45 of 250

As400 Stuff

✔ Multiple-language integration
✔ Enhancements to the ILE compilers
✔ Reusable components
✔ Control over application run-time environment
✔ Code optimization
✔ Tool availability
✔ Foundation for the future

1. Define binder program?
The binder program means binding the procedure it is called binder program.

2. How to the create module?
 A module is created as a separate object type (*MODULE). Using the

CRTRPGMOD command creates an RPGLE module. A module object cannot be run
directly. You must use the CRTPGM command to bind module object into a program
object. Do option 15 or CRTRPGMOD command to create a module. The CRTPGM
command is used to create a program from one or more module.

SKANDASAMO/RPGILE

MAIN

 *************** Beginning of data *******************************

0001.00 C CALLB 'ADD'

0002.00 C CALLB 'SUB'

0003.00 C CALLB 'MUL'

0004.00 C SETON LR

 ****************** End of data **********************************

SKANDASAMO/RPGILE

ADD

 *************** Beginning of data *******************************

0002.00 C Z-ADD 4 A 4 0

0002.01 C Z-ADD 5 B 4 0

0004.00 C A ADD B C 4 0

0005.00 C C DSPLY

Page 46 of 250

As400 Stuff

0006.00 C SETON LR

 ****************** End of data *********************************

SKANDASAMO/RPGILE

SUB

 *************** Beginning of data *******************************

002.00 C Z-ADD 10 A 4 0

002.01 C Z-ADD 5 B 4 0

004.00 C A SUB B C 4 0

005.00 C C DSPLY

006.00 C SETON LR

 ****************** End of data *********************************

SKANDASAMO/RPGILE

 MUL

 *************** Beginning of data ******************************

0002.00 C Z-ADD 10 A 4 0

0002.01 C Z-ADD 5 B 4 0

0004.00 C A MULT B C 4 0

0005.00 C C DSPLY

0006.00 C SETON LR

 ****************** End of data *********************************

CRTPGM Take F4

 Program > MAIN Name

 Library > SKANDASAMO Name, *CURLIB

 Module > MAIN Name, generic*, *PGM, *ALL (PEP)

 Library > SKANDASAMO Name, *LIBL, *CURLIB...

Page 47 of 250

As400 Stuff

 > ADD

 > SKANDASAMO

 > SUB

 > SKANDASAMO

 + for more values > MUL

 > SKANDASAMO

 Text 'description' *ENTMODTXT

OUTPUT

DSPLY 9

 DSPLY 5

 DSPLY 50

3. What are the differences in CALL, CALLB and CALLP?
CALL is a dynamic call where the control will be transferred when the

program is executed. (Control will be transfer the another program (run time) so it
is dynamic call).

Where as CALLB and CALLP are static calls. A module is a non-executable
program and it contains one or more procedures. If you have modules without
procedure then it means that it is having only one default procedure and in case we
can use CALLB.

A module is having more than one procedure then we can give explicitly the
procedure name to be called in case of CALLP out of these three CALLP is the most
efficient one. (Using the CALLB, CALLP a program or module is bind in the program
so it is static).

4. What is the difference between Bind by value and Bind by
reference?

Bind by value Bind by Reference

Here the entire modules to be
bounded are physically copied into
the main program object.

In this case we are binding the
programs by using service
programs, which contain a
reference to the module that has
been called, and the modules are

Page 48 of 250

As400 Stuff

not physically copied into the
program object.

The program will be executed even
when you delete the entire module
that has been called.

The program will not execute when
the bind modules are deleted.

Bind by value is faster than bind by
reference. (All the modules to be
bind in the main program, so it is
fast)

It is not as faster as bind by value.
(All the modules can’t bind the
main program it is refer the pointer)

5. Define pass by value and pass by reference?

 Pass by reference:
Pass by reference we are passing the address of the parameters and not

the actual value and so the changes in the called procedure will affect the
value in the calling programs. In OPM programs we are using only call by
reference.

 Pass by value:
Pass by value we are passing the value of the parameter, changes made

to the formal arguments in the called function have no effect on the values of
the actual arguments in the calling function it is used in c program.

In RPGLE we have the option to pass the parameter by value by giving
the keyword VALUE.

1. What are Program Entry Procedure (PEP) and User Entry Procedure
(UEP)?
If we are binding many modules together to form a program then we have to

specify which module has to take control first when it has been called and that
module is called as PEP for that program.

User entry procedure (UEP) is the first statement that takes the control
when a program has been called. For example in C programs main () will be
executed first when it has been called and likewise in RPG the statement coded in C
Spec will take the control first.

Page 49 of 250

As400 Stuff

2. Define Copybook in RPGLE?
It will copy a Subroutine (or) any group of codes physically into the program,

which is copying it.

 SKANDASAMO/RPGILE

 COP

 *************** Beginning of data ******************************

0002.00 C DSPLY A 5 0

0002.01 C EXSR ADD

0004.00 C SETON LR

0005.00 C/COPY RPGILE, COPY

 ****************** End of data ********************************

SKANDASAMO/RPGILE

 COPY

 *************** Beginning of data ******************************

0000.01

0001.00 C ADD BEGSR

0002.00 C ADD 5 A

0003.00 C A DSPLY

0004.00 C ENDSR

 ****************** End of data *******************************

OUTPUT

13

DSPLY 18

3. How to create a service program and what are the steps involved in
this?

Page 50 of 250

As400 Stuff

✔ The service program means most commonly used modules are
grouped (binding) together to form it is called service program.

✔ A service program is not bound to its caller until activation time
While creating service program we can create a binder program where we

can refer the modules (or) procedures (or) even data types to be used by the
program which is using service program.

➢ Advantages of service programs
 They do not take up auxiliary storage space. There is only one copy for all

users.
 There is only a single copy of the read-only code in main storage for all

users in this service programs is the same as a program that you call
dynamically.

 Each user of the service program has an independent work area.
 You can pass parameters to a service programs by using the traditional

parameter list (or) by importing and exporting variables.
 Service programs can be maintained independently of the programs that

use the functions. In most cases, changing a service programs does not
cause a program using the function to be changed or re-created.

➢ Disadvantages of service programs
 Service programs are less desirable for a function you may or may not

need. The reason is that it is slower to call a main program that refer to a
service program

1. Explain procedure used in RPGLE?

 A procedure is a non-executable program. If a module is having more than
one procedure then we can give explicitly the procedure name to be called in case
of CALLP.

 Defining the prototype:
Prototype will specify the following things

✔ Parameter type
✔ Sequence of the parameter
✔ Return variable and its type
✔ It tells the name of the procedure and also the type of the call.

It will avoid all the run time problems like parameter mismatch by
specifying the prototype.

 Prototype interface
It is like *entry parameter where we will specify the parameters

that are received in this program.

 Import and export
If you want to specify the procedures to be the external programs

then we can specify EXPORT in your procedure.

Page 51 of 250

As400 Stuff

 Global and local variables
If you declare a variable in main procedure then it will be

accessible in all sub procedure and this is global declaration and if you
specify the declaration in the sub procedures then it will not be accessed
in other procedures or in the main procedure.

 Return
If we specify return in the sub procedure then it means that we are

returning something to the calling program. We can return a maximum of
only one variable to the calling program.

 Recursion
A procedure calling to itself is known as recursion.

 Pass by value/pass by reference
In case of pass by reference we are passing the address of the

parameters and not the actual value and so the changes in the called
procedure will affect the value in the calling program. In OPM program
we are using only call by reference and in RPGLE we have the option to
pass the parameter by giving the keyword VALUE.

 CALLP/Expression
We can call the procedure by using CALLP command if it is not

having any return type and by an expression if it returns any value.

Database

1. Define source physical file?
Source physical file is also a file, which has one, or more files included in it. It

is just like a directory and it contains many members. The members are like a
various programs residing in the directory CRTSRCPF is used to create source
physical file.

2. Physical Files and Logical File

Physical files hold the actual data of a database file. The data is written in arrival
sequence.

Physical files are not required to have keyed fields. If a physical file has key fields,
this is the order that an RPG program will read the data if the File Spec in the
program indicates to read the data in keyed sequence. Also, with a keyed field, an
RPG program can CHAIN, SETLL, READE and READP.

A simple logical file is a different view of the physical file. It is actually a list of
pointers to the physical file. Most of the time, a logical file is nothing more than a
way of accessing the physical file with different key fields.
Logical file does not occupies any memory space and logical file be derived from
physical file. One or more logical file can be derived from a single physical file. A
logical file can contain up to 32 record formats. It selects records dynamically. It
cannot exist without a physical file. We can filter the data with criteria by using

Page 52 of 250

As400 Stuff

select and omit command. CRTLF command is used to create a LF. It accesses
the data by creating access path.

 A logical file does not contain any data but provides the ‘VIEWS’ of the data
to satisfy end-user’s needs. There are two types, 1. Non - join logical file, 2. Join
logical file With the standard AS/400 supplied tools, it is hard to see the logical file.
One way is to use the copy file CPYF to copy the logical file to a new physical file.
Then, look at the physical file... it will be in the same order as the logical file. The
AS/400 Database is full featured. Logical files can join multiple files and select and
create new fields. Maximum number of fields included in a PF is 8000. Maximum no
of key fields included is 120.

There are two types of logical files,

✔ Non join logical file
✔ Join logical file

1. List the differences between physical file and logical file.

Physical file Logical file

1. Occupies the portion of memory.
It’s containing data.

Does not occupy any memory space.
Does not contain any data.

2. A physical file contains one record
format and can contain many
members

 A logical file can contain up to 32
record formats but only one member.

3.Can be exist even without LF Cannot exist without PF

4. The PF cannot be deleted without
deleting the associated LFs.

If the LF is deleted then the PF need
not be deleted.

5.CRTPF command is used to create
such object

CRTLF command is used to create
such type object

6.The object type is PF The object type is LF

2. What are the four levels of entries in physical file?

Page 53 of 250

As400 Stuff

(I). File level entries (optional): File level entries give the system
information of the entire file. (UNIQUE, LIFO, FIFO, FCFO, REF)

UNIQUE: A record cannot be entered or copied into a file if its key
value is same as the key value of a record already existing in the file.

LIFO: Last in first out

FIFO: First in first out

FCFO: First change first out.

REF: This keyword is used to specify the name of the file from which
the field descriptions are retrieved.

Ex: you can specify whether the key is unique.

(ii). Record format level entries: Record format level entries give the
system information about specific record format in the file. For a PF
the record format name is specified along with an optional text
description. (FORMAT, TEXT)

(i) FORMAT:

This record-level keyword specifies that the record format being define
is to share the field specifications of a previously defined record
format. The name of the record format being defined must be the
name of the previously defined record format.

 The format of this keyword is:

 FORMAT (LIB-NAME / FILE-NAME)

(ii) TEXT:

This record level keyword is used to supply a text description of the
record format and it is used for documentation purposes only.

The format of this keyword is:

 TEXT (‘description’)

(iii) Field level entries: The field names and field lengths are specified
along with and optional text description for each field. (ALIAS,
ALWNULL, CCSID, CHECK, CHKMSGID, CMP, COLHDG, COMP, DATFMT,
DATSEP, DFT, EDTCDE, EDTWRD, REFFLD, REFSHIFT, TEXT, TIMEFMT,
TIMESEP, VALUES, VARLEN)

Page 54 of 250

As400 Stuff

(iv) Key field level entries: The field names used as key fields are
specified. (DESCEND, SIGNED, ABSVAL, UNSIGNED, ZONE, NOALTSEQ,
DIGIT)

1. What are the six levels of entries in logical file?

(i) File level entries (optional): File level entries give the system
information of the entire file. You can specify whether the key is same
as physical file.

(ii) Record format level entries: Record format level entries give the
system information about specific record format in the file. For
examples, for a logical file when a record format is described we can
specify the physical file it is based on. Example: Jfile, PFile.

(iii) JOIN Level entries: Join level entries give the system information
about PF used in a JOIN LOGICAL FILE. (It is not applicable to NON JOIN
LOGICAL FILES).
Join, JFLD,

(iv) Field level entries (optional): The field level entries give the system
information about individual fields in the record format. Example: JRef

(v) Key field level entries: The key field level entries give the system
information about the key fields of a file. The field names used as key
fields are specified.

(vi) Select / Omit level entries: These entire give the system
information about which records are to be returned to the program
when processing the file. These specifications apply to logical file only.
Examples: Range(field), values(recordformat)

1. Explain JDUPSEQ and JDFTVAL.

JDUPSEQ:

This join –level keyword is used to specify the order in which records
with duplicate join fields are presented when the JLF is read.

The format for this keyword is:

JDUPSEQ (Sequencing field-name [*DESCEND])

Page 55 of 250

As400 Stuff

✔ This keyword has no effect on the ordering of records with unique
keys.

✔ If *DESCEND is not specified then the default is sequencing in
ascending order.

JDFTVAL:

✔ When this file-level keyword is used the system provides default
values for all for fields when a join to a secondary file does not
produce any records.
✔ If this keyword is not specified a record in the primary file for

which there is no corresponding record in the secondary file is skipped.

1. What are the different between non-join logical files and join logical
files.

Non join logical file Join logical file

We can able to insert or delete or
update records using non-logical file.

Insertion, updating or deletion of
records is not possible in join logical
files.

DFU can be used to display non-join
logical file.

DFU is not available

1-32 record format is specified Only one record format can be
specified

Commitment control is used Commitment control cannot be used.

2. How many record formats can have physical & logical file.

✔ In physical file only one record format can be specified.
✔ In logical file 1-32 record formats are specified

1. What is the advantage open query file?
✔ Dynamic selection of records
✔ It will sort the records based on the field values.
✔ We can retrieve records based on Virtual fields.
✔ Can create join logical files

Page 56 of 250

As400 Stuff

1. Explain non-join logical file?
Non-join logical files can either be a simple logical file, which contains only

one record format or a multiple record format logical file, which contains more than
one record format.

Logical files can be derived from 1 to 32 physical files and so a logical file can
have a maximum of 32 record formats.

 Single record format logical file:
If a logical file is derived from single physical file it is called simple logical
file.

 Multiple record format logical file:
Multiple record non-join logical files will select records from 2 or more
physical files by referring to only one logical file.

✔ Each record format is always associated with one or more physical file.
✔ The same PF can be used in more than one record format.

 Specify the entries in single or multiple format logical files:
1. File-level entries (optional): (REFACCPTH, DYNSLT)

REFACCPTH: The access path information for this logical file is to be copied from
another PF or LF.

Format of the keyword is:

REFACCPTH (LIB name / DATABASE name)

DYNSLT: This keyword is selection and omission tests in the file. This
keyword specifies dynamic select/omit.

2. Record – level entries :(PFILE)

PFILE: The physical files containing the data to be accessed through
the

 Record formats being defined.

Format of the keyword is:

PFILE (LIB name / PF name)

3. Field-level entries (optional)

4. Key field –level entries (optional)

5. Select and Omit –field level entries (optional)

Page 57 of 250

As400 Stuff

REFACCPTH—it is applicable for non-join logical file only and meaning
is referring the access path from the PF or LF in the file – level entries.

PFILE--- it is applicable only for non-join logical file in record level
entries.

1. It is possible to insert record to JOIN LF?
NO, insertion, updating or deleting of records is not possible in JOIN LF.

2. Explain join logical file?

A join-logical file is a logical file that combines two or more PF. In the record
format not all the fields need to exist in all the PF.

✔ A PF cannot be changed through a JLF.
✔ DFU cannot be used to display a JLF.
✔ Only one record format can be specified in a JLF.
✔ Commitment control cannot be used with a JLF.
✔ Key fields must be fields defined in the join record format and must be

fields from the PRIMARY FILE.
Specify the entries in join logical file:

1. File-level entries (optional): (JDFTVAL)

2. Record-level entries: (JFILE)

3. join-level entries :(JOIN, JFLD, JDUPSEQ)

4. Field –level entries (optional): (JREF, ALL, CONCAT, DYNSLT,
RENAME, SST, TRNTBL)

5. Key field –level entries (optional)

6. Select and Omit field level entries. (Optional)

➢ JFILE----It is similar to indicate that this is a join logical field
and it must have more than 2 physical files.

➢ JOIN: It is similar that this file level entries to be represent
the position of the files .There must one primary file and can
have more than I secondary files..

➢ JFLD: Which feels we are going to join.

Page 58 of 250

As400 Stuff

➢ JREF: represents the primary file reference field
➢ JDFTVAL: represents that it as a left outer join.

SELECT OMIT

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMIT

 FMT PF.

 *************** Beginning of data *******************

0001.00 R RECSEL

0002.00 EMPNO 5P 0

0003.00 EMPNAME 20A

0004.00 K EMPNO

 ****************** End of data ************************

 EMPNO EMPNAME

 000001 10,001 SHYAM

 000002 10,002 SANKA

 000003 10,003 SHYAM

 000004 10,004 SENTH

 000005 10,005 SANKA

 000006 10,006 SHYAM

 000007 10,007 SANKA

 000008 10,008 SENTH

 000009 10,009 SHYAM

 000010 10,010 SENTH

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

Page 59 of 250

As400 Stuff

 SEU==> SELOMILF

 FMT LF...

 *************** Beginning of data *********************

0001.00 R RECSEL PFILE (SELOMIT)

0002.00 K EMPNO

0003.00 S EMPNO CMP (GT 10003)

0004.00 O EMPNAME CMP (EQ 'SHYAM')

 ****************** End of data **************************

 Display Report

 EMPNO EMPNAME

 000001 10,002 SANKA

 000002 10,004 SENTH

 000003 10,005 SANKA

 000004 10,006 SHYAM

 000005 10,007 SANKA

 000006 10,008 SENTH

 000007 10,009 SHYAM

 000008 10,010 SENTH

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMILF

 FMT LF

 *************** Beginning of data ************************

0001.00 R RECSEL PFILE (SELOMIT)

0002.00 K EMPNO

Page 60 of 250

As400 Stuff

0003.00 O EMPNAME CMP (EQ 'SHYAM')

0004.00 S EMPNO CMP (GT 10001)

 ****************** End of data ************************

 EMPNO EMPNAME

 000001 10,002 SANKA

 000002 10,004 SENTH

 000003 10,005 SANKA

 000004 10,007 SANKA

 000005 10,008 SENTH

 000006 10,010 SENTH

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMIT

 FMT PF.

 *************** Beginning of data *******************

0001.00 R RECSEL

0002.00 EMPNO 5P 0

0003.00 EMPNAME 20A

0004.00 K EMPNO

 ****************** End of data ************************

 EMPNO EMPNAME

 000001 20 SHYAM

 000002 30 RAM

 000003 40 TOM

 000004 50 RAMESH

Page 61 of 250

As400 Stuff

 000005 60 SHYAM

 000006 70 SHYAM

 000007 80 TOM

 000008 90 TOM

 000009 100 VASU

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMILF1

 FMT LF

 *************** Beginning of data ************************

0001.00 R RECSEL PFILE (SELOMIT1)

0002.00 K EMPNO

0003.00 S EMPNO CMP (GT 50)

0004.00 S EMPNAME VALUES ('SHYAM')

 ****************** End of data **************************

 EMPNO EMPNAME

 000001 20 SHYAM

 000002 60 SHYAM

 000003 70 SHYAM

 000004 80 TOM

 000005 90 TOM

 000006 100 VASU

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMILF1

Page 62 of 250

As400 Stuff

 FMT LF.

 *************** Beginning of data ************************

0001.00 R RECSEL PFILE (SELOMIT1)

0002.00 K EMPNO

0003.00 S EMPNO CMP (GT 50)

0004.00 O EMPNO RANGE (20 40)

 ****************** End of data ***************************

 EMPNO EMPNAME

 000001 50 RAMESH

 000002 60 SHYAM

 000003 70 SHYAM

 000004 80 TOM

 000005 90 TOM

 000006 100 VASU

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMILF1

 FMT LF

 *************** Beginning of data ****************

0001.00 R RECSEL PFILE (SELOMIT1)

0002.00 K EMPNO

0003.00 S EMPNO CMP (GT 50)

0004.00 S EMPNAME VALUES ('SHYAM')

0005.00 O EMPNO RANGE (70 90)

 ****************** End of data ********************

Page 63 of 250

As400 Stuff

 EMPNO EMPNAME

 000001 20 SHYAM

 000002 30 RAM

 000003 40 TOM

 000004 50 RAMESH

 000005 60 SHYAM

 000006 70 SHYAM

 000007 80 TOM

 000008 90 TOM

 000009 100 VASU

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELOMILF1

 FMT LF

 *************** Beginning of data *****************

0001.00 R RECSEL PFILE (SELOMIT1)

0002.00 K EMPNO

0003.00 S EMPNO CMP (GT 50)

0005.00 O EMPNO RANGE (70 90)

 ****************** End of data ************************

 EMPNO EMPNAME

 000001 20 SHYAM

 000002 30 RAM

 000003 40 TOM

 000004 50 RAMESH

Page 64 of 250

As400 Stuff

 000005 60 SHYAM

 000006 70 SHYAM

 000007 80 TOM

 000008 90 TOM

 000009 100 VASU

 ****** ******** End of report ********

1. Explain self join?

Joining a file to it-self is known as self-join.

 (Or)

A physical file can be joined to itself to read records that are formed by
combining two or more records from the PF itself.

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SEJOIN

 FMT PF

 *************** Beginning of data ********************

0001.00 R EMP

0002.00 EMPID 5P 0

0003.00 EMPNAME 20A

0004.00 MGRID 5P 0

0005.00 K EMPID

 ****************** End of data ***************************

 EMPID EMPNAME MGRID

 000001 10,001 SEBI JOSEPH C. 50,001

Page 65 of 250

As400 Stuff

 000002 10,002 PURUSHOTTAM 50,002

 000003 10,003 SAMEER DIGHE 50,003

 000004 10,004 SHARATA 50,004

 000005 10,005 PAUL 50,005

 000006 50,001 SHIVARAM 90,001

 000007 50,002 GAURAV 90,002

 000008 50,003 KING 90,003

 000009 50,004 SAM 90,004

 000010 50,005 ANIL 90,005

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELJOIN

 FMT LF

 *************** Beginning of data **************************

0001.00 R EMP JFILE (SEJOIN SEJOIN)

0002.00 J JOIN (1 2)

0003.00 JFLD (MGRID EMPID)

0004.00 EMPID JREF (1)

0005.00 EMPNAME JREF (1)

0006.00 MANAGER RENAME (EMPNAME) JREF (2)

0007.00 COLHDG ('MANAGER')

 ****************** End of data *****************************

 EMPID EMPNAME MANAGER

 000001 10,001 SEBI JOSEPH C. SHIVARAM

 000002 10,002 PURUSHOTTAM GAURAV

Page 66 of 250

As400 Stuff

 000003 10,003 SAMEER DIGHE KING

 000004 10,004 SHARATA SAM

 000005 10,005 PAUL ANIL

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELJOIN1

 FMT LF

 *************** Beginning of data************************0001.00
R EMP JFILE (SEJOIN SEJOIN)

0002.00 J JOIN (1 2)

0003.00 JFLD (MGRID EMPID)

0004.00 EMPID JREF (1)

0005.00 EMPNAME RENAME (EMPNAME)

0006.00 JREF (1)

0007.00 MGRID JREF (2)

 ****************** End of data *************************

 EMPID EMPNAME MGRID

000001 10,001 SEBI JOSEPH C. 90,001

000002 10,002 PURUSHOTTAM 90,002

000003 10,003 SAMEER DIGHE 90,003

000004 10,004 SHARATA 90,004

000005 10,005 PAUL 90,005

****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SELJOIN1

 FMT LF

Page 67 of 250

As400 Stuff

 *************** Beginning of data************************

0001.00 R EMP JFILE (SEJOIN SEJOIN)

0002.00 J JOIN (1 2)

0003.00 JFLD (MGRID EMPID)

0004.00 EMPID JREF (1)

0005.00 MANAGER RENAME (EMPNAME)

0006.00 JREF (2) COLHDG ('MANAGER')

0007.00 MGRID JREF (2)

 ****************** End of data ****************************

 EMPID MANAGER MGRID

 000001 10,001 SHIVARAM 90,001

 000002 10,002 GAURAV 90,002

 000003 10,003 KING 90,003

 000004 10,004 SAM 90,004

 000005 10,005 ANIL 90,005

 ****** ******** End of report ********

2. Explain normalization?

It is the process of segregating and decomposing information held within a
system into logically grouped, related. Uniquely identifiable entities

3. Explain the command ADDPFCST?

ADDPFCST is a command that is used to define the Constraint on your
physical file. The constraint has several types. These are REFCST, UNQCST and
PRIKEY. By the by, this command is helps to define Update rules and Delete rules.

Page 68 of 250

As400 Stuff

4. How to send the message to the screen SNDPGMMSG?
BY passing unique message ID message data and message file.

SNDPGMMSG syntax

SNDPGM MSG MSGID (MSG0001) MSGF (MSGSUB)

5. How you can list all the LF of a PF?

By using DSPDBR command it is to list all the files, which are related to a PF.
It displays all the LF that is referring the PF and also lists the child table if it is
having a relation through ADDPFCST.

6. What is use of DSPFFD and DSPFD?
 DSPFD (display file description)

✔ It is used to display the details about the file when it is created.
 DSPFFD (display file field description)

✔ It is used for listing details about individual fields.
1. Explain inner join or natural join and left outer join?

 Inner join
Inner join means the matching records in between the joining

file will be selected.

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> JPF01

 FMT PF

 *************** Beginning of data ****************************

0001.00 R JP1REC

0002.00 EMPNO 5S 0

0003.00 EMPNAME 20A

0004.00 K EMPNO

 ****************** End of data *****************************

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> JPF02

 FMT PF.

Page 69 of 250

As400 Stuff

 *************** Beginning of data ***************************

0001.00 R JP2REC

0002.00 EMPNO 5S 0

0003.00 EMPSAL 10P 2

0004.00 K EMPNO

 ****************** End of data ********************************

 Display Report
 EMPNO EMPNAME

 000001 1,001 SHYAMBABU

 000002 1,002 SENTHILKUMAR

 000003 1,003 RAMESH

 ****** ******** End of report ********

 EMPNO EMPSAL

000001 1,001 100.00

000002 1,002 20.00

000003 1,004 300.00

****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> JOFILE

 FMT LF.

 *************** Beginning of data ************************

0001.00 R JREC1 JFILE (JPF01 JPF02)

0002.00 J JOIN (1 2)

0003.00 JFLD (EMPNO EMPNO)

0004.00 EMPNO JREF (JPF01)

0005.00 EMPNAME

Page 70 of 250

As400 Stuff

0006.00 EMPSAL

0007.00 K EMPNO

 ****************** End of data*********************

 EMPNO EMPNAME EMPSAL

 000001 1,001 SHYAMBABU 100.00

 000002 1,002 SENTHILKUMAR 20.00

 ****** ******** End of report ********

Left outer join

Left outer join all the records from primary file and matching
records from the secondary file will be selected.

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> JOOUT

 FMT LF.

 *************** Beginning of data*********************

0001.00 JDFTVAL

0002.00 R JREC1 JFILE (JPF01 JPF02)

0003.00 J JOIN (1 2)

0004.00 JFLD (EMPNO EMPNO)

0005.00 EMPNO JREF (JPF01)

0006.00 EMPNAME

0007.00 EMPSAL

0008.00 K EMPNO

 ****************** End of data********************

 EMPNO EMPNAME EMPSAL

 000001 1,001 SHYAMBABU 100.00

 000002 1,002 SENTHILKUMAR 20.00

Page 71 of 250

As400 Stuff

 000003 1,003 RAMESH .00

 ****** ******** End of report ********

SEQUENCING DUPLICATE RECORDS

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SEQ1

 FMT PF.

 *************** Beginning of data ***********************

0001.00 R SEQREC1

0002.00 EMPNO 5P 0

0003.00 EMPNAME1 20A

0004.00 ADDRESS 20A

0005.00 K EMPNO

 ****************** End of data **************************

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> SEQ2

 FMT PF

 *************** Beginning of data****************

0001.00 R SEQREC2

0002.00 EMPNO 5P 0

0003.00 EMPNAME 20A

0004.00 TEL 10P 0

 ****************** End of data ******************

 EMPNO EMPNAME1 ADDRESS

 000001 10,001 BOB 23,OLD MADIWALA

Page 72 of 250

As400 Stuff

 000002 10,002 DANNY 50,LONG ISLAND

 000003 10,003 PRINC 90,ATTUR

 ****** ******** End of report ********

 EMPNO EMPNAME TEL

 000001 10,001 BOB 825,777

 000002 10,001 BOB 825,999

 000003 10,001 BOB 825,888

 000004 10,002 DANNY 4,222,600

 ****** ******** End of report ********

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> JDFTSEQ

 FMT LF

 *************** Beginning of data ******************

0001.00 R RECSEQ JFILE (SEQ1 SEQ2)

0002.00 J JOIN (1 2)

0003.00 JFLD (EMPNAME1 EMPNAME)

0004.00 JDUPSEQ (TEL)

0005.00 EMPNO JREF (2)

0006.00 EMPNAME1

0007.00 ADDRESS

0008.00 TEL

 ****************** End of data************************

 EMPNO EMPNAME1 ADDRESS TEL

 000001 10,001 BOB 23,OLD MADIWALA 825,777

 000002 10,001 BOB 23,OLD MADIWALA 825,888

Page 73 of 250

As400 Stuff

 000003 10,001 BOB 23,OLD MADIWALA 825,999

 000004 10,002 DANNY 50,LONG ISLAND 4,222,600

 ****** ******** End of report ********

JOIN DESCEND

Columns . . . 1 71 Edit KSENTHILS/EXAMPLE

 SEU==> JDFTSEQ

 FMT LF

 *************** Beginning of data ***********************

0001.00 R RECSEQ JFILE (SEQ1 SEQ2)

0002.00 J JOIN (1 2)

0003.00 JFLD (EMPNAME1 EMPNAME)

0004.00 JDUPSEQ (TEL *DESCEND)

0005.00 EMPNO JREF (2)

0006.00 EMPNAME1

0007.00 ADDRESS

0008.00 TEL

 ****************** End of data *************************

 EMPNO EMPNAME1 ADDRESS TEL
 000001 10,001 BOB 23,OLD MADIWALA 825,999

 000002 10,001 BOB 23,OLD MADIWALA 825,888

 000003 10,001 BOB 23,OLD MADIWALA 825,777

 000004 10,002 DANNY 50,LONG ISLAND 4,222,600

 ****** ******** End of report ********

1. How to create a trigger in AS/400?
The trigger is an event to be performing before or after any change to a

database. When a trigger is added to a physical file, three attributes need to be
defined.

Page 74 of 250

As400 Stuff

✔ The first is the event that will cause the trigger to fire. A trigger
event can be an insert, an update, or a delete a record from the
file.

✔ The second attribute to define is when to fire the trigger-before or
after the event.

✔ The third attribute to define is the identification of the trigger
program to by run.

 We can infer that up to six triggers can be defined for each PF.

✔ For each update, insert, and delete
✔ Two triggers can be defined

➢ One that runs before the event
➢ One that runs after the event

These trigger are added using the ADDPFTRG

✔ Can be removed with the remove PF trigger command (RMVPFTRG)
The command ADDPFTRG takes F4

PF PF001

LIB SKANDASAMO

TRIGGER TIME *AFTER *BEFORE *AFTER

TRIGGER EVEVT *UPDATE *UPDATE *INSERT *DELETE
PROGRAM PGM001 NAME

LIB SKANDASAMO

REPLACE TRIGGER *NO *NO *YES

ALLOW REPEATED *NO *NO *YES

1. How will be establishing REFERENTIAL INTEGRITY in as/400 systems?
 By using ADDPFCST command establish in as/400 system.
 Referential integrity concepts

➢ Referential constraint
➢ Parent and dependent files
➢ Unique key and primary keys
➢ Parent and foreign keys
➢ Delete rule

Propagate delete from parent file to dependent file

 Restrict delete on parent file

➢ Update rule
Restrict inconsistent updates

Page 75 of 250

As400 Stuff

➢ Insert operations on dependent file are checked
 Referential constraint

✔ A referential constraint is a relation between two files, the parent
file and the dependent file.

✔ This relationship establishes that every record in the dependent file
has to have a matching record in the parent file.

✔ The key value of any record in the dependent file must match a key
value in the parent file.

✔ We call parent key the key of the parent file and foreign key the
key in the dependent file.

✔ The parent key has to be unique and cannot contain null values.
✔ The foreign key value has to match one (any only one) value of the

parent key. Otherwise the foreign key can contain a null value.
✔ A record in the parent file may be related to multiple records in the

dependent files; each record in the dependent file has to have just
one” parent” or have a null foreign key.

✔ Primary key we means a unique and ascending key, which is the
primary, access path for a PF and cannot contain null values.

✔ Primary access path for a database file on the AS/400 in the access
path used to access the file by using OPNDBF command.

 Delete rule
We can delete a record from parent file or dependent file first check
for delete rule.

✔ CASCADE: If we want to delete a record from the parent file and its
parent key is matching records in a dependent file, the DBMS will
delete all the matching records of the dependent file.

✔ SETNULL: If we delete a record from the parent file and parent key
is matching some records in a dependent file, the DBMS will set to
null the matching keys in the dependent file.

✔ SETDEFAULT: This is like previous case, but matching occurrences
in the foreign key are set to their default values. The default value
for the foreign key has to match a record in the parent file.

✔ RESTRICT: The DBMS will prevent any attempt to delete records in
the parent file if its key is matching some records in the dependent
file.

✔ NO ACTION: This has the same meaning as restrict, but different
timing. When we use *NOACTION and an invalid delete operation is
about to take place, DB2 /400 will delay any error message until
the end of the operation itself, allowing for instance the activation
of a before trigger attached to the PF.

➢ If *restrict is in use, the exception message is sent
immediately.

➢ Deleting records in a dependent file is always permitted.
 Update rule

Page 76 of 250

As400 Stuff

✔ RESTRICT: We cannot change the value in a parent key if the old
values are matching some records in the dependent file.

➢ The remaining portion of the record can always be updated.
➢ We cannot update a foreign key in a dependent file if the

new value for the key is not null and does not match any
value of the parent key.

✔ NO ACTION: This is same as * restrict but with different timing
considerations. Refer above; where we describe no action delete
operations.

 Inserts
✔ There is no insert rule to be chosen, but referential integrity

prevents any insert in the dependent file if the new record has no
match in the parent file and its foreign key is not null.

1. What RUNSQLSTM will do?

✔ If we want to execute set of SQL statement then we can write all the SQL
statement to be including with the source.

✔ Type as SQL
✔ Only insert, update and delete and no select is allowed.
✔ Then use STRSQLSTM to execute the program
✔ RUNSQLSTM SRCFILE (LIB/TEST) SRCMBR (SQL01) COMMIT (*NONE)

1. What is a field reference file?
This is PF, which does not have any data and contains only the field
descriptions and these fields are referred in other PF by using REF and
REFFLD

2. What are the various ways creating access path?
Access path means the records are to be retrieved from a file. The records

can be retrieved from a PF or a LF either ARRIVAL SEQUENCE or by KEYED
SEQUENCE. For LF you can also select records using select or omit keywords

Arrival sequence access path

✔ Sequentially, where each record is taken from the next sequential
physical position in the file.

✔ Directly by relative records number, where the record number is identified
by its position from the start of the file.

Keyed sequence access path

It is based on the contents of the key fields as defined in DDS. This
type of access path is updated in the contents of a key field is changed.

There are three ways of bounding the access path

Page 77 of 250

As400 Stuff

 Immediate
Access path is always maintained for every opening in a file.

 Rebuild
Access path is maintained when the file is open and various updates

are recorded and the access path is rebuilt every time when the access path
is closed.

 Delayed
Access path is maintained when the file is opened and updates

recorded. When the file is closed all the updates to the records are closed
together but it is not rebuild. When the recorded update percentage exceeds
25% then rebuild of records take place.

1. How many record formats PF, LF, DSPF and SFL?
PF- 1, LF- 32, DSPF-1024 SFL-512

2. Define KLIST?
KLIST operation is a declarative operation that gives a name to list of KFLD.

This KLIST can be used as a search argument to retrieve records from files that
have a composite key.

3. Define PLIST?
The declarative PLIST operation defines symbolic name for a parameter list

to be specified in a CALL operation.

4. Define composite key?
It is a key for a file, which is composed of more than one field.

5. Is it possible to create a logical file whose Physical file is not in
same library?

Yes...for that u have to specify the actual data path in keyword PFILE
Like
 A R A1 PFILE (AMIT/A2)
 A K CODE
Then this will create the LF A1 for A2 PF...
Yes, just put the user library in which you want to create on top and followed by
other library in which physical file is located.
Provided the first library should not have physical file.
Then try to create the logical.

6. Can you delete the record space permanently in PF through CL?

USING THE COMMAND 'RGZPFM' The Reorganize Physical File Member (RGZPFM)
command compresses (removes deleted records from) one member of a physical
file in the database, and it optionally reorganizes that member.

7. What is the difference between adding keys & constraints into a
physical file?

Page 78 of 250

As400 Stuff

During the time of compilation of a file, constrains are being removed, from the
file .but at the time of compilation keys are not removed in case from pf.
Constraints has no affects on members of a pf but keys has affect on members of pf
A key field defines the order in which the records of a PF member will be sorted
(ascending or descending).
On the other hand, a constraint, such as UNIQUE, defines which key field values or
records are valid /allowable to be written into a file. UNIQUE prevents a record
with duplicate key field values to be written into a PF.

8. How to insert more than one record to a pf at a time? (Bulk insert to
a pf)

Bulk insert can be done in ways
1. Using SQL we can run a query
 Insert into table1 values ('a', 'b', 'c'), ('x', 'y', 'z')
2. Using STRDFU we insert records into PF
3. Using DBU (Database utility) also we can insert records

9. How to see number of logical files depending on a pf? Can we
declare more than 20 logical files from a single pf? Is it possible?

1. We can see the number of logical files in the following ways

a. DSPDBR (filename) command

b. Using DBU (Filename) and Shift + F2

There is one more way to see the logical USING DBU is just type 'DBR' and press
enter.

2. Yes we can declare more than 20 files on a physical file

10.I want to change the attribute of field or want to add new field in
existing PF but condition is format level identifier should not
change, is it possible?

Whenever a file is changed (by adding or deleting a field), Format level identifier is
also changed, even if u are using CHGPF. All the programs that are this file needs to
be compiled again. You can avoid recompiling programs by setting Format Level
Check parameter to *NO in command CRTPF. But this is not a good method, since it
may affect the program.

11.Maximum how many fields we can create under a record format of
PF?

We can give max of 8000 fields in rec format of a PF. But it also depends on the no.
of bytes occupied by the record format. Because rec. format of PF may occupy at
max 32766 bytes.ie if there is only one field which occupy 32766 bytes then we

Page 79 of 250

As400 Stuff

can't define a new field in record format. So it depends on the no. of bytes occupied
by the field defined in the record format.

Ex. Char field - max value (32766 bytes)

Variable length field - max value (32740 bytes)

Allow null field - max value (32765)

Variable & allow null field - max value (32739)

12.How can we write LF using flat file?

BLDINDEX MLR?WS?,28,8,ML.RETUR,,DUPKEY

BLDINDEX ML.HIS?WS?,9,6,ML.INVHS,,DUPKEY,,17,5

TYPE BLDINDEX in system 36 environment & F4

 BLDINDEX PROCEDURE Optional-*

 Ignored-%

Creates an alternate index for a physical file

Name of file to be CREATED . . NIROSH

 Start posit for 1st field of key 1-4096 6

 Length of first field 1-120 5

 Start posit for 2nd field of key 1-4096 1

 Length of 2nd field . 1-120 5

 Start posit for 3rd field of key 1-4096

 Length of 3RD field 1-120

 Name of PHYSICAL FILE . . . ML.CRDR

 Creation date of physical file

 Allow duplicate keys DUPKEY,NODUPKEY DUPKEY

 Prefer disk locn A1,A2,A3,A4,block number

13.Why we create the Physical File Member?

MEMBER IS USE TO STORE THE DATA, EACH FILE MUST HAVE MEMBER.

Page 80 of 250

As400 Stuff

14.CHGPF to compile the PF without using the data:

You have added some fields to a physical file that has lots of records. You don’t
want to lose the data, but you have to compile that to include those fields. In that
case, make use of CHGPF.

CHGPF FILE (SHAILESH/SFL001PF) SRCFILE (SHAILESH/TESTPGMS)

It gives you the result similar compilation (including the added fields) without losing
the data. Here SFL001PF is the PF and TESTPGMS is the source physical file.

Note: CHGPF cannot be used to achieve the result similar to compilation in case of
deletion of some fields. You have to compile the PF to exclude the deleted fields.

In SQL there is a command called ALTER which performs similar functions (like ADD
constraint, DROP constraint, ADD field, ALTER field and DROP field) as CHGPF.

But here also we get error message when we try to alter or delete the fields just like
the CHGPF scenario.

15.Multi format Logical file Example:

Here is an example of a multi-format logical file:

A R FORMAT1 PFILE (FILE1)

A FIELD1

A FIELD2

A K FIELD1

A R FORMAT2 PFILE (FILE2)

A FIELD1

A FIELD2

A K FIELD1

In the program, you can chain with the file name and you'll get records from both
physical files, or the format name and you'll get records only from the specific
PFILE. If you want to update or write a record with this logical file, you must use the
format name.

Limitation: Even though logical files allow multiple record formats, we cannot have
different record formats for the same physical file (as the record format of the LF
has to be the same as PF). Record formats of many physical files can be present in

Page 81 of 250

As400 Stuff

one LF making it multi format LF. We can have up to 32 record formats in the same
LF.

If you want to access the same PF with different set of keys you have to go for
multiple simple logical files like the one shown below.

LF1:

A R FORMAT1 PFILE (FILE1)

A FIELD1

A FIELD2

A K FIELD1

LF2:

A R FORMAT1 PFILE (FILE1)

A FIELD2

A FIELD3

A K FIELD2

Here we want to access the PF, File1 with 2 sets of keys. Field1 & Field 2 is one set
and Field 2 & Field 3 is the other set. But we cannot mention 2 record formats with
these keys in the same logical file. We have to write 2 separate logical files LF1 and
LF2 in order to have 2 different record formats for that PF, File1.

16.Access Path – PF and LF

In a program, a record is deleted from a physical file. In the same program, the file
is read again (the file is not closed and the delete operation is not committed as
well). In that case, we will be accessing the deleted record also, since the refresh
has not taken place on that PF. Only after Commit (in case the file is not user open
only commit or ending the program can refresh the file) or explicit close, data
refresh happens. It will not free up the space though. The record will be empty but
will occupy space. Only RGZPFM can free up the space occupied by the deleted
record.

But in the case of LF, refresh happens immediately if we associate them with the
keywords that can rebuild/refresh the access path. Say for example, we have
*IMMED for rebuild, as soon as the operation happens the file will get refreshed. It
will not wait for the commit or close or program ending to happen.

Page 82 of 250

As400 Stuff

Note: After deleting record 2, and not issuing RGZPFM, if we are trying to access
the PF with RRN as key starting from the first record, the deleted record 2 will not
be processed even though the space is still occupied (i.e., it is not treated as a data
record). The compiler treats it as empty space and skips the record.

17.Tell me the differences between DB2 CLI (call Level Interface) and
embedded SQL?

An application that uses an embedded SQL interface requires a pre-compiler to
convert the SQL statements into code, which is then compiled, bound to the
database, and executed. In contrast, a DB2 CLI application does not require pre-
compilation or binding, but instead uses a standard set of functions to execute SQL
statements and related services at runtime. This difference is important because,
traditionally, pre-compilers have been specific to a database product, which
effectively ties your applications to that product. DB2 CLI enables you to write
portable applications that are independent of any particular database product. This
independence means a DB2 CLI application does not have to be recompiled or
rebound to access different database products, but rather selects the appropriate
one at runtime. DB2 CLI can execute any SQL statement that can be prepared
dynamically in embedded SQL. This is guaranteed because DB2 CLI doesn't actually
execute the SQL statement itself, but passes it to the DBMS for dynamic execution.

18.General points in DB2/400

1. DB2/400 is an integrated RDBMS.

2. The major parts of a file are Record format and Access path.

3. Record format in a file describes the way the data is actually stored.

4. Access path describes the order in which the records are to be retrieved.

5. We have two types of access patch Keyes sequence access path and Arrival
sequence access path.

6. Access Path maintenance specifies how access paths are maintained for
closed files. While file is open the system maintains the access path changes.

7. In general we have three types of access path maintenance, *IMMED , *DLY
and *REBLD

8. *IMMED must be specified for files that require UNIQUE keys. (Immediate
access path maintenance mainly for files used as interactively)

9. *REBLD the access path is completely rebuilt each time a file member is
opened. This cannot be specified for file if its access path is being journal.

Page 83 of 250

As400 Stuff

10.*DLY the maintenance of the access path is delayed until the PF member is
opened for use. Updates to the access path are collected from the time the
member is closed until it is opened again. When it is opened, only the
collected changes are merged into the access path.

11.In CHGPF command we have the keyword *LVLCHK (Level Check). This
specifies whether the levels of record format identifiers are checked to verify
that the current record format identifier is the same as that specified in the
program that opens the physical file. The level identifiers of the record
formats are checked when the file is opened. If the level identifiers do not
match, an error message is sent to the program requesting the open, and the
file is not opened.

12.For physical file and for logical the file type should be “FILE”. Attribute for
physical file should come as “PF-DATA”, logical file come as “LF” and for
source physical file attribute should come as “PF-SRC”

13.Let’s say one scenario, your source physical file name is “QDDSSRC” and
inside this source physical file when you try to create a physical file with
name same as that of source physical file “QDDSSRC” what will happen? The
source physical file will get deleted.

14.UNIQUE keyword is used in LF and PF to prevent duplicate key values.

15.DESCEND keyword is used to arrange records from the highest to the lowest
key field values.

16.RANGE keyword is used to provide a range of valid values.

17.REF keyword specifies the name of file contains the referenced fields.

18.REFFLD keyword copies the field description from the referenced file.

19.FORMAT keyword shares the field description with the existing record format.

20.DFT keywords provide the default value for the fields.

21.CMP keyword provides a comparison value. Example CMP(GE 0)

22.CHECK keyword provides validity checking.

23.COLHDG keyword provides column heading.

24.EDTCDE and EDTWRD keyword edit code and edit word.

25.TEXT keyword provides the description of record or field.

26.VALUES keyword provides a list of valid values.

Page 84 of 250

As400 Stuff

27.A physical file can have only one record format.

28.A physical file cannot share the format of logical file.

29.For physical file the default maximum number of member is one, the
maximum members we can attain is *NOMAX

30.For physical file the default value of initial number of records which we can
add to database is 10000 and maximum increments in a physical file are
three.

31.Maximum number of key fields allowed in a PF is 120. Max number of fields
in a PF is 8000.

32.Members in physical file, the significance of member is it helps to classify
data easier.

33.Example for member concept is, I want to keep data for a year in one file,
and I frequently want to process data for one month at a time. For this I can
create one physical file with twelve different members for each month.

34.We can copy data of a member to other member of same physical file. (We
can’t compile any new members)

35.Specific commands for physical file members, ADDPFM, CHGPFM, RMVM,
INZPFM (*DFT or *DLT), RGZPFM, DSPPFM.

36.Even if you delete the records in a PF through program, still the space used
by the deleted records not used by other purpose. Hence using RGZPFM
command we can compress the deleted record space.

37.How we can add a new field to a file which has thousands of data in it?
CHGPF command will help you to add new field without losing your current
data.

38.We can add member to logical file with command ADDLFM.

39.DSPFD (Display file description) with TYPE *MBRLIST will display all members
associated with the specified file. *TRG will give you the trigger program list.

40.An ODP (Open Data Path) is the path through which all input/output
operations for the files are performed. It connects the program to a file. If we
do not specify the SHARE (*YES) then a new data path is created every time
a file is opened.

41.Logical file is used to arrange data from one or more PFs into different
formats and sequences. Logical files contain no data. Three different types of

Page 85 of 250

As400 Stuff

logical file we have, Simple logical file, Multiform at logical file and Join
logical file. A multi format logical file is also known as Union file.

42.The record format name of logical file should/should not be same as that of
physical file which mentioned in PFILE keyword. PFILE keyword tells the
physical file that the logical file based on.

43.There are some keywords specific for LFs, CONCAT, DYNSLT, JFILE, JFLD, JOIN,
JREF, PFILE, RENAME, and SST.

44.Column 17 values, R – Record format name, K- Key field name, J – Join
specification, S – Select field name, O – Omit field name.

45.In LF the access path we can specify in three ways, keyed sequence access
path, Arrival sequence access path and REFACCPTH.

46.In keyed sequence access path,
R CUSRCD PFILE(PFNAME)

K KEY1
K KEY2

47.In arrival sequence access path,
R CUSRCD PFILE(PFNAME)

48.In REFACCPTH,(Reference access path)
 REFACCPTH(LIBRNAME/PFNAME)
R CUSRCD PFILE(PFNAME)

49.SELECT/OMIT specification apply to logical file only.

50.In multi format logical file the maximum number of record format we can
declare is 32.

51.Example of SELECT/OMIT
S FIELD1 VALUES(123 345 567 566)

S FIELD2 RANGE(30122 30300)
S FIELD3 CMP(GE 300)

52.We have two types of SELECT/OMIT, Access path SELECT/OMIT and Dynamic
SELECT/OMIT. Access path SELECT/OMIT is maintained by system when
records are added or changed. Dynamic SELECT/OMIT processing is done
when records are read by the program.

53.For a multi format logical file if you want to access a particular member of a
physical file. Then execute the OVRDBF command with the specific member
name before reading the logical file.

Page 86 of 250

As400 Stuff

54.Dynamic SELECT/OMIT, when a program reads a records from the file, the
system only returns those records that meet the select/omit values. That is
the actual SELECT/OMIT processing is done when records are done by the
program, rather than records are added or changed.

55.DYNSLT is the keyword for dynamic select.

56.Another method of selecting records is using QRYSLT parameter on the open
query file (OPNQRYF) command.

57.Join logical file is a logical file that combines fields from two or more physical
file. Cannot change physical file using join logical file. Can specify only one
record format in join logical file. The record format in join logical file cannot
be shared. Commitment control cannot be used with join logical file.

58.We can join a physical file to itself.

59.Join logical files are Read only files.

60.In Join logical file maximum of 31 secondary files can join. (Total 32 files.)
Max of two files can be joined at a time.

61.Example of join logical file,
R JOINREC JFILE(PF1 PF2)

J JOIN(PF1 PF2)
 JFLD(NBR NBR)

 NBR JREF(PF1)
 NAME

 SALARY
K NBR

62.At least two physical files must be specified on JFILE keyword. The first file
specified on the JFILE is the primary file the other files are secondary files.

63.JOIN keyword identifies which two files are joined by the JOIN specification. If
only two physical files are joined by the join logical file, then JOIN keyword is
optional.

64.JFLD keyword identifies the join fields that join records from physical files
specified in JOIN. JFLD must be specified at least once for each JOIN
specification. Join fields except character type fields must have the same
attribute.

65. JREF keyword specifies which physical file to use.

Page 87 of 250

As400 Stuff

66.Example of join logical file, In this case the NBR filed comes from PF2,
because relative file number is specified.

R JOINREC JFILE(PF1 PF2)
J JOIN(PF1 PF2)

 JFLD(NBR
NBR) NBR S JREF(2)

 NAME
 SALARY

67.Reference file does not contain any data. This is a physical file. It is used as a
reference for the field descriptions for other files.

68.OPNQRYF is like a temporary logical file. It will get automatically deleted
when we close this query file. OPNQRYF command opens a file that contains
a set of database records that satisfies a database query request. OPNQRYF
never shares an existing shared ODP in the job or activation group.

69.OVRBDF command must be executed before executing OPNQRYF command.

70.We can copy data from data path opened by OPNQRYF by CPYFRMQRYF.

71.Parameters in OPNQRYF commands, FILE – name of file that get processed
by OPNQRYF command. OPTION – open option used for query file example
*INP, *OUT, *UPD, *DLT, *ALL. QRYSLT – query select specifies the selection
value. KEYFLD - *ASCEND, *DESCEND. UNIQUEKEY – Specifies whether the
query is restricted to records with unique key values.

72.Example for OPNQRYF Command,
OPNQRYF FILE(ORDFILE) OPTION(*ALL)

QRYSLT(‘ORDDATE=%RANGE(“920101”
“920131”) OR ORDAMT > 100’) KEYFLD(ORDAMT
*DESCEND)

73.Difference between PF and LF

Physical File Logical File

One Record Format More than one record format

Record will loss, while
compile

No record loss while compile

Contain actual data Doesn’t contain data but it provides view
from PF

We can update data We cannot update data

Page 88 of 250

As400 Stuff

We can use REF
keyword

We use REFACCPTH, DYNSLT

We can’t use
SELECT/OMIT

We can use except in join logical file.

74.Difference between JLF and LF

Join Logical file Logical File

One record format One or more record format

Record format name
should be different

Record format name should be
same as of Physical file

Through JLF we cannot
change PF

Through LF we can change PF.

75.Database management commands, DSPFFD, DSPFD, DSPDBR, and
DSPPGMREF.

76.A trigger is a set of actions that are run automatically when a specified
change operation is performed on a specified physical database file. The
change operation can be an insert, update, or delete high level language
statement in an application program.

77.On the AS/400 system, a set of trigger actions can be defined in any
supported high level language. (C, Cobol. RPG, PLI, SQL)

78.ADDPFTRG command adds a trigger to call a named trigger program to a
specified physical file. The trigger program can be specified to be called
before or after a change operation occurs. The change operation can be
insert, update or delete. A maximum of six triggers can be added to a
physical file. Once a trigger is added to a physical file, all members of that
specified file are affected by trigger. example,

ADDPFTRG FILE (EMP)
TRGTIME(*AFTER) TRGEVENT(*INSERT) PGM(LIB2/INSTRG)

79.The Remove Physical File Trigger (RMVPFTRG) command removes the
association of files and trigger program.

Page 89 of 250

As400 Stuff

80.A trigger program cannot include the following commands, COMMIT,
ROLLBACK, and ENDCMTCTL.

81.A trigger program can call other programs or can be nested (that is, a
statement in a trigger program causes the calling of another trigger
program.) The maximum trigger nested level for insert and update is 200.

82.A double-byte character set (DBCS) is a character set that represents each
character with 2 bytes. The DBCS supports national languages that contain a
large number of unique characters or symbols (the maximum number of
characters that can be represented with 1 byte is 256 characters). Examples
of such languages include Japanese, Korean, and Chinese. There are two
general kinds of DBCS data: bracketed-DBCS data and graphic (non-
bracketed) DBCS data. Bracketed-DBCS data is preceded by a DBCS shift-
out character and followed by a DBCS shift-in character. Graphic-DBCS
data is not surrounded by shift-out and shift-in characters.

83.The DB2/400 database supports the following physical file constraints,
Referential constraints, Primary key constraints and Unique constraints.

84.The Add Physical File Constraint (ADDPFCST) command adds all types of
physical file constraints. To add unique and primary key constraints, specify
*UNQCST for the Type parameter for a unique constraint and *PRIKEY for a
primary key constraint. When adding a primary key constraint, the specified
key becomes the file's primary access path.

85.The Remove Physical File Constraint (RMVPFCST) command removes a
constraint.

86.Physical File Constraint Considerations and Limitations,
○ A file must be a physical file.
○ A file can have a maximum of one member, MAXMBR(1).
○ A constraint can be defined when the file has zero members. A

constraint cannot be established until the file has one, and only one,
member.

○ There is a maximum of 300 constraint relations per file.
○ Constraints cannot be added to files in the QTEMP library.

1. The CRTSRCPF command creates a physical file, but with attributes
appropriate for source physical files. For example, the default record length
for a source file is 92 (80 for the source data field, 6 for the source sequence
number field, and 6 for the source date field).

2. DB2/400 Database Data Recovery, we have the following methods.
Journal management, for recording data changes to files

Commitment control, for synchronizing transaction recovery

Force-writing data changes to auxiliary storage

Abnormal system end recovery

3. SQL/400 will not support multi format logical file.

Page 90 of 250

As400 Stuff

4. In UDB/400 (Universal Data Base) an SQL table is an single member physical
file.

5. In UDB/400 an SQL view is a single member logical file.
6. In UDB/400 an SQL index is a single member logical file with keyed access.
7. SQL/400 refreshes records as rows and fields as columns.
8. The SQL related program variables, Known as the SQL communication area

(SQLCA), you should code in the working storage section to have the SQL
compiler generate SQLCA group and elementary items. EXEC SQL INCLUDE
SQLCA END-EXEC. SQLCA works as an error handler.

9. SQLCODE value less than zero means error, Value “100” means no rows
found.

1. File pointer – after a failed chain operation

When the CHAIN operation is not completed successfully (for example, an error
occurs or no record is found), the file specified in factor 2 must be repositioned (for
example, by a CHAIN or SETLL operation) before a subsequent read operation can
be done on that file.

2. What are Triggers?

Triggers is a self contained set of transact executable statements which can be
invoked during the operations such as insert, update, delete can be performed in a
database file.
We can able to add trigger in a physical file: ADDPFTRG
To remove a trigger: RMVPFTRG
In the case of SQL/400 we can create trigger by....
>>STRSQL
>>CREATE TRIGGER TRG_Name after INSERT/DELETE/UPDATE On PF1
 Insert Into PF2 Values ('RECORDS DELETED IN PF1')
>>Delete FROM PF1 Where Recordno = 10
>>SElect * FROM PF2.

In the above code, the records in the PF1 is deleted , at once the trigger trg_name
is fired and the given insert statement is activated in pf2.

3. What is the purpose of USROPN keyword?

The USROPN keyword causes the file not to be opened at program initialization.
This gives the programmer control of the file's first open. The file must be explicitly
opened using the OPEN operation.
For example, if a file is opened and later closed by the CLOSE operation, the
programmer can reopen the file (using the OPEN operation) without having
specified the USROPN keyword on the file description specification.

4. What is LEVEL CHECK?

Whenever PF is compiled, the system generates unique code for identifying the file
for future reference.

Page 91 of 250

As400 Stuff

When we compile the Program that uses the PF, it will use that unique code of the
PF.
If we call the program, it runs successfully. But if we change the PF and recompile
the PF, the system generates a new unique code for that PF. So, our program
doesn’t have this unique code and hence terminates abnormally with a Level Check
error.
The solution of Level Check error is whenever it happens we have to either compile
the PF with Level Check parameter value *NO or we have to compile the program
again.

OVRDBF

1. What exactly the OVRDBF does?

It can do a lot below are some basic examples

1) Say you have an internally defined file in your program.

OVRDBF FILE (CR311H) TOFILE (CB.CR1H)
CALL CR1H
DLTOVR FILE (CR311H)

2) Say you want to use a different file (with the same record level) in a program.

OVRDBF FILE (PAYROLL) TOFILE (MYPAYROLL)
CALL GIVERAISE
DLTOVR FILE (MYPAYROLL)

3) Say you want to use OpnQryF (ug hate old school).

OVRDBF FILE(OCEANHDR) TOFILE(OCEANHDR) SHARE(*YES)
OPNQRYF FILE((OCEANHDR)) +
 QRYSLT('HSTATUS ¬= "C" & HCUST = 08177') +
 KEYFLD((HCUSTREF))
 QRYSLT('HCUST = 08177') +
CALL PGM(AB010R)
CLOF OPNID(OCEANHDR)
DLTOVR FILE(*ALL)

4) Say you have a specific member that you want to use

OvrDbf File (TaRpt0103p) ToFile(TaRpt0103p) +
 OvrScope(*CallLvl) Mbr(&PoMember)
CALL TaRpt0103
DltOvr FILE(*ALL) LVL(*)

To be theoretical,
The OVRDBF is used to

Page 92 of 250

As400 Stuff

1) To temporarily change the attributes of a file like member, position of rrn
,sharing the Open Data Path etc....
2) To Redirect the references made for one file to other file.

Actually OVRDBF is used for multimember concept. A pf having multiple member
and u need to access one of the members from that, OVRDBF is used. Also, in CL u
can access only 1 file at a time. For more than 1 file also OVRDBF is used

OPNQRYF

5. What is the open query file?

It is a dynamic record selection. The OPNQRYF command acts as a filter
between the processing program and the database records. The database file can
be a PF or LF. It will create open data pathway to access (retrieve) data file.

If you want to specify any SQL operation within a CL we have to use
OPNQRYF

 Functions supplied by OPNQRYF are:
✔ Dynamic record selection.
✔ Dynamic keyed sequence access path
✔ Dynamic keyed sequence access path over a join
✔ Dynamic join
✔ Handling missing records in secondary join files
✔ Unique-key processing
✔ Mapped field definitions
✔ Group processing
✔ Final total-only processing
✔ Improving performance
✔ Open query identifier (ID)

1. What is the different between OPNQRYF and SQLRPG?

OPNQRYF SQLRPG

OPNQRYF will come along with
OS/400 system and no need to have
any additional package needed to
execute it

We need to have SQLRPG installed
in as/400 system which involves
additional cost to the programmers

OPNQRYF is faster as compared to
SQLRPG

It is slower

Page 93 of 250

As400 Stuff

OPNQRYF is nothing but a dynamic
logical files will be created and the
records

SQLRPG is imbedding SQL
statements directly within SQL
statement

2. What are the various steps in creating OPNQRYF?
Totally five steps involved in creating OPNQRYF

 OVRDBF
✔ FILE (file PF) TOFILE (LIB/ PF) SHARE (*Yes)

➢ If a PF is having 100 records and if we want to override the
PF so that it continues only the specific number of records
we are using OVRDBF

 OPNQRYF
✔ FILE (LIB / PF) QRYSLT (‘EMPNO *EQ ‘ *BCAT &A)

➢ If you want to perform any SQL operation we have to declare
in OPNQRYF command only.

➢ In case of OPNQRYF we can perform expression only based
on characters but not on numeric.

✔ *BCAT
If you want to perform any charter expression are using
*BCAT expression which will provide a blanks in between
the 2 variables.

✔ %WLDCRD
➢ It is similar to %LIKE in SQL
➢ QRYSLT (‘EMPNAME *EQ %WLDCRD (“S* “)’)

It will fetch all the records whose empname starts
from S.

✔ *CT
➢ It will fetch all the records, which conditions the particular

charter.
➢ QRYSLT (‘EMPNAME *CT “S” ‘)

✔ %RANGE
➢ It will fetch the records within the specific range
➢ QRYSLT (‘EMPNO *Eq %RANGE (100 110)’)

 CALL PGM (LIB/NAME) PARM ()
 DLTOVR

✔ As we see early the main file logically overridden and after
performing the necessary operation, we have to delete the
logical file so that the main file contains the actual records for
this DLTOVR will be used.

✔ DLTOVR FILE (OPNPF)
 CLOF

✔ We have to close the file, which has been opened

Page 94 of 250

As400 Stuff

✔ CLOF OPNID (OPNPF)
You will copy overridden file records using CPYFRMQRYF

 CPYFRMQRYF
✔ Since OVRDBF is logical we cannot able to list the variables,

which satisfy the query condition. To see the records being
selected we have to copy from the source file to a temporary
file for this CPYFRMQRYF will be used

✔ CPYFRMQRYF FROMOPNID (OPNPF) TOFILE (LIB/NAME)
MBR (*REPLACE) CRTFILE (*YES) FMTOPT (*NOCHK)

 RUNQRY
✔ We have copied the contents satisfy the query into a temporary

file using CPYFRMQRYF. If we run the destination file we got the
actual records, which satisfy the query.

✔ RUNQRY QRYFILE (LIN/NAME)
Example:

Database PF

SKANDASAMO/CLP

OPENF

 *************** Beginning of data ****************************

0000.01 C UNIQUE

0001.00 C R OPNQFILE

0002.00 C OEMPNO 5S 0

0003.00 C OEMPNAME 20A

0004.00 C OADDRESS 20A

0005.00 C ODOB 8S 0

0006.00 C K OEMPNO

 ****************** End of data ********************************

Data file

 Display Report

 OEMPNO OEMPNAME OADDRESS ODOB

 000001 1,001 SENTHIL SALEM1 1,232,002

Page 95 of 250

As400 Stuff

 000002 1,002 KUMAR TRICHY 12,123,000

 000003 1,003 SHYAM SALEM 12,345,000

 000004 1,004 RAMESH SALEM 1,010,100

 000005 1,005 BALU SALEM 222

 000006 1,007 KUMAR JJ 32,938

 ****** ******** End of report ********

CL program

 SKANDASAMO/CLP

 OPNQFILE5

 *************** Beginning of data *********************************

0001.00 PGM

0002.00 DCL VAR(&A) TYPE(*CHAR) LEN(5)

0003.00 DCLF FILE(SKANDASAMO/OPNQFILE3) RCDFMT(OPNF3)

0004.00 SNDRCVF RCDFMT(OPNF3)

0005.00 CHGVAR VAR(&A) VALUE(&OEMPNO)

0006.00 OVRDBF FILE(OPENF) SHARE(*YES)

0006.01 OPNQRYF FILE((SKANDASAMO/OPENF))
QRYSLT('OEMPNO *EQ' +

0006.02 *BCAT &A)

0006.03 CPYFRMQRYF FROMOPNID(OPENF)
TOFILE(SKANDASAMO/TEMP) +

0006.04 MBROPT(*REPLACE) CRTFILE(*YES)

0009.00 DLTOVR FILE(OPENF)

0010.00 CLOF OPNID(OPENF)

0010.01 RUNQRY QRYFILE((SKANDASAMO/TEMP))

0011.00 ENDPGM

Page 96 of 250

As400 Stuff

 ****************** End of data*********************************

OUTPUT

 EMPLOYEE NUMBER: 1001

 OEMPNO OEMPNAME OADDRESS ODOB

 000001 1,001 SENTHIL SALEM1 1,232,002

 ****** ******** End of report ********

1. How the records are accessed for using OPNQRYF?
By creating open data pathway to access (retrieve) data file.

2. What is the difference between FMTDTA and OPNQRYF?

FMTDTA OPNQRY

It will sort the records sequentially
based on the position of the record

It will sort the records based on the
field values.

 If any change in the attribute size of a
PF then we have to change the
program specification also.

If there is any change in the attribute
size it will not affect the program
specification also.

FMTDTA is bit faster in process than
OPNQRYF.

OPNQRYF is slower as compare to
FMTDTA if we are processing millions
of records.

3. List out the Differences between a LF and command OPNQRYF?

LF creates a new object in the system while that is not the case for OPNQRYF.LF
creates a permanent data access path to the physical file that will be updated as
and when and add, update and delete operation is performed on file Whereas
OPNQRYF creates a temporary access data path that is shared by high level pgm
for further processing of recs in file.

I agree with Vaiv20. Just want to add that OPNQRYF is used with keyword Share
(*Yes) and that's what makes the ODP available to high level pgms.
Also the usage of OPNQRYF is for adhoc jobs that are executed once in a while
whereas LF is used in case where the ODP is going to be used pretty regularly. So
LF object would be preferred when the usage is going to be regular.
OPNQRYF would be good where the job is going to be once in a while.

Page 97 of 250

As400 Stuff

LF would make the job faster compared to OPNQRYF though it depends on what
kind of maintenance option you use for LF.
The main difference is: Logical file creates permanent object on the system.
OPNQRYF creates temporary access path.

4. OPNQRYF - Short explanation with samples in CLP

CL-PROGRAM

 FUNCTION.....: RETRIEVE/SELECT DATA WITH THE CL-COMMAND OPNQRYF.

 ILLUSTRATED IN SAMPLES 1 - 3.

 TASK.........: RETRIEVE USERINFO ON FIELDS FROM THE USRPRF-FILE.

 USE THE CL-COMMAND DSPUSRPRF *ALL OUTPUT(*OUTFILE)

 FILE(LIB/QRYSLTPF). LIB IS YOUR OWN TEST-LIBRARY.

 THE PROGRAM ONLY USES 2 FIELDS TO AVOID CONFUSION.

 IN THIS PROGRAM THE TEST-LIBRARY IS JPHLIB.

 INPUT........: DB-FILE: QRYSLTPF

 FIELDS: UPUPRF 10 A

 UPUID 10 P0

 DISCLAIMER...: THE DATA RETRIEVED AND THE COMBINATION OF FIELDS

 IS COMPLETELY NONSENSE AND INTENDED ONLY TO ILLU-

 STRATE THE USE OF THIS COMMAND. CREATE BETTER EX-

 AMPLES ON YOUR OWN !!

 CREATE A FILE IN YOUR TESTLIBRARY CALLED BRUG. THIS IS THE FILE

 THAT RECIEVES OUTPUT-DATA FROM THE OPNQRYF.

 OUTPUT.......: DB-FILE: BRUG

 FIELDS: UPUPRF 10 A

Page 98 of 250

As400 Stuff

 UPUID 10 P0

 OPENID IN THE OPNQRYF-STATEMENT IS YOUR REFERENCE TO THE

 INTERNAL OPNQRYF-OUTPUT. USE THIS NAME AS FROM-FILE

 IN THE FINAL CPYFRMQRYF WHERE YOU RETRIEVE THE SELECTED

 DATA TO A PHYSICAL FILE.

 TIP..........: BE ABSOLUTELY SURE TO USE THE RIGHT NUMBER OF

 QUOTES (') WHEN YOU DEFINE THE SELECT-STATEMENT.

 ALL CHAR-VARIABLES IN THE OPNQRYF SELECT-LINE MUST

 BE EMBEDDED IN TRIPLE-QUOTES AND *CAT:

 ''' *CAT &CHARVAR *CAT ''' OR

 "' *CAT &CHARVAR *CAT '"

 PGM

 DCL VAR(&USER) TYPE(*CHAR) LEN(10)

 DCL VAR(&NR) TYPE(*DEC) LEN(10 0)

 DCL VAR(&EX) TYPE(*DEC) LEN(1 0)

 DCL VAR(&NRALF) TYPE(*CHAR) LEN(10)

 DCL VAR(&X) TYPE(*CHAR) LEN(1) + VALUE(' ')

 DCLF FILE(QRYSLTDF) RCDFMT(*ALL)

/* THE VAR X HELPS TO LEAVE THE LIBRARY-LIST UNCHANGED */

/* WHEN THE PROGRAM HAS FINISHED PROCESSING. */

 ADDLIBLE LIB(JPHLIB)

 MONMSG MSGID(CPF2103) EXEC(CHGVAR VAR(&X) VALUE('X'))

/* PROMPT FOR NAME OG ID AND TYPE OF EXAMPLE */

 CHOISE: SNDRCVF RCDFMT(F0)

/* QRYSLT ONLY OPERATES WITH ALFA-VARIABLES. THE NUME- */

Page 99 of 250

As400 Stuff

/* RIC VAR. &NR IS CONVERTED TO CHAR. &NRALF */

/* USED IN SAMPLE 3. */

 CHGVAR VAR(&NRALF) VALUE(&NR)

/* F3 WAS PRESSED ON THE SCREEN */

 IF COND(&IN03 = '1') THEN(GOTO CMDLBL(END))

 IF COND(&EX = 1) THEN(GOTO CMDLBL(ONE))

 IF COND(&EX = 2) THEN(GOTO CMDLBL(TWO))

 IF COND(&EX = 3) THEN(GOTO CMDLBL(THREE))

/***/

/* SAMPLE ONE: CHAR CONSTANT AND NUM CONSTANT */

/***/

ONE:

 OPNQRYF FILE((JPHLIB/QRYSLTPF)) +

 QRYSLT(' +

(UPUPRF *EQ ''JPH'') +

*AND +

(UPUID *EQ 338) +

 ') +

OPNID(BRUG)

 GOTO CMDLBL(OUT)

/***/

/* SAMPLE TWO: CHAR VARIABLE AND NUM CONSTANT */

/***/

TWO:

 OPNQRYF FILE((JPHLIB/QRYSLTPF)) +

Page 100 of 250

As400 Stuff

QRYSLT(' +

 (UPUPRF *EQ ''' *CAT &USER *CAT ''') +

 *AND +

 (UPUID *EQ 338) +

') +

 OPNID(BRUG)

 GOTO CMDLBL(OUT)

/***/

/* SAMPLE THREE: CHAR VARIABLE OG NUM VARIABLE. */

/* DIGITS IS A OPNQRYF KEYWORD THAT CONVERTS */

/* A FIELD FROM NUMERIC TO ALFA (CHAR.) */

/***/

THREE:

 OPNQRYF FILE((JPHLIB/QRYSLTPF)) +

 QRYSLT(' +

 (UPUPRF *EQ ''' *CAT &USER *CAT ''') +

 *AND +

 (%DIGITS(UPUID) *EQ ''' *CAT &NRALF *CAT ''') +

 ') +

 OPNID(BRUG)

 GOTO CMDLBL(OUT)

/***/

/* MAKE A COPY OF THE OPNQRY OUTPUTFILE TO THE PF BRUG */

/***/

OUT: CPYFRMQRYF FROMOPNID(BRUG) TOFILE(JPHLIB/BRUG) +

Page 101 of 250

As400 Stuff

 MBROPT(*ADD)

 CLOF OPNID(BRUG)

 DLTOVR FILE(*ALL)

 GOTO CMDLBL(CHOISE)

/* LIBRARY-LIST IS RESTORED */

END: IF COND(&X = ' ') THEN(RMVLIBLE LIB(JPHLIB))

 RCLRSC

 RETURN

 ENDPGM

DISPLAY-FILE:

 A DSPSIZ(24 80 *DS3)

 A R F0

 A CF03(03 'Afslut')

 A 1 69TIME

 A 1 63'Time:'

 A 1 30'Retrieve user and id'

 A DSPATR(HI)

 A 2 69DATE

 A EDTCDE(Y)

 A 2 63'Date:'

 A 4 12'User name :'

 A DSPATR(HI)

 A PROMPT 1A I 24 4DSPATR(ND)

 A 24 6'Enter=Run F3=Exit'

 A COLOR(BLU)

Page 102 of 250

As400 Stuff

 A USER 10A I 4 35

 A 6 12'User id :'

 A DSPATR(HI)

 A NR 10S 0I 6 35CHECK(FE)

 A CHECK(RZ)

 A 8 12'Sample :'

 A DSPATR(HI)

 A 10 8'1 = CHAR CONSTANT og NUM CONSTANT'

 A 11 8'2 = CHAR VARIABLE og NUM CONSTANT'

 A EX 1S 0I 8 35RANGE(1 3)

 A 12 8'3 = CHAR VARIABLE og NUM VARIABLE'

PHYSICAL FILE BRUG:

 **

 * PHYSICAL FILE BRUG TO HOLD SELECTED RECORDS IN OPNQRYF

 **

 *___

 A R SELECT

 *___

 A UPUPRF 10 TEXT('USER')

 A COLHDG('USER')

 A UPUID 10P 0 TEXT('ID')

 A COLHDG('ID')

 *___

I hope this will help you understanding some of the basics in OPNQRYF.

However there is a small thing usually wrapped in plastic or hidden on a CD called a
manual. This could be a great help but sometimes very hard to understand and with

Page 103 of 250

As400 Stuff

some stupid examples that don't work. My samples can be typed in on your AS/400
and it works.

Don't hesitate to send a mail if you want more help or want to discuss some of the
above mentioned topics.

BR JPH and GL.

Here are some reference sites:

Database programmers guide

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/dbp/rbafomst02.htm

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/dbp/rbafomst199.htm#HDRO
PNQF

http://www.geocities.com/SiliconValley/Hills/6632/opnqryf.html

5. OPNQRY Example

http://publib.boulder.ibm.com/html/as400/v4r5/ic2979/info/db2/rbafomst1
40.htm#Header_199

TESTPF data:

EMPNO EMPNAME EMPPHONE

1 Agnie 1,234,567

 2 Amudha 3,456,789

TESTPF1 data:

EMPNUM EMPNAM EMPADDR

 1 Agnie Coimbatore

 3 Varun Bangalore

Format of OPNQRYRES – Note that it contains the fields of TESTPF as well as
TESTPF1

EMPNUM EMPNAM EMPPHONE EMPADDR

Page 104 of 250

http://www.geocities.com/SiliconValley/Hills/6632/opnqryf.html
http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/dbp/rbafomst02.htm

As400 Stuff

SHAILESH/TESTPGMS/TSTOPNQRYF – Program to test OPNQRYF command

 PGM

/* To select the records present in TESTPF & TESTPF1 and copy that to a new file
(which contains all the fields of TESTPF and TESTPF1 */

 OPNQRYF FILE((SHAILESH/TESTPF) (SHAILESH/TESTPF1)) +

 FORMAT(SHAILESH/OPNQRYRES) +

 JFLD((TESTPF/EMPNO TESTPF1/EMPNUM *EQ)) +

 JDFTVAL(*NO)

 CPYFRMQRYF FROMOPNID(TESTPF) TOFILE(SHAILESH/OPNQRYRES) +

 MBROPT(*REPLACE) CRTFILE(*YES) FMTOPT(*NOCHK)

 CLOF OPNID(TESTPF)

/* To select the records present in TESTPF & not present in TESTPF1 */

 OPNQRYF FILE((SHAILESH/TESTPF) (SHAILESH/TESTPF1)) +

 FORMAT(SHAILESH/TESTPF) +

 JFLD((TESTPF/EMPNO TESTPF1/EMPNUM)) +

 JDFTVAL(*ONLYDFT)

 CPYFRMQRYF FROMOPNID(TESTPF) TOFILE(QTEMP/RESULT) +

 MBROPT(*REPLACE) CRTFILE(*YES) FMTOPT(*NOCHK)

 CLOF OPNID(TESTPF)

/* To select the records present in TESTPF1 & not present in TESTPF */

 OPNQRYF FILE((SHAILESH/TESTPF1) (SHAILESH/TESTPF)) +

 FORMAT(SHAILESH/TESTPF1) +

 JFLD((TESTPF1/EMPNUM TESTPF/EMPNO)) +

 JDFTVAL(*ONLYDFT)

 CPYFRMQRYF FROMOPNID(TESTPF1) TOFILE(QTEMP/RESULT1) +

 MBROPT(*REPLACE) CRTFILE(*YES) FMTOPT(*NOCHK)

Page 105 of 250

As400 Stuff

 CLOF OPNID(TESTPF1)

 ENDPGM

SQLRPGLE

6. SQLRPGLE Example

D PGMEMPNAME S 25A

D EMPID S 5S 0 INZ(00003)

D TSTEMPNAME S LIKE(PGMEMPNAME)

C/EXEC SQL

C+ INSERT INTO SHAILESH/TESTPF VALUES(00003, 'Varun')

C/END-EXEC

C/EXEC SQL

C+ SELECT EMPNAME INTO :PGMEMPNAME FROM SHAILESH/TESTPF

C+ WHERE EMPNO = :EMPID

C/END-EXEC

C/EXEC SQL

C+ UPDATE SHAILESH/TESTPF SET EMPNAME = 'AGNIE'

C+ WHERE EMPNAME = 'AGNI'

C/EXEC SQL

C+ DELETE FROM SHAILESH/TESTPF WHERE EMPNO = 00003

C/END-EXEC

C EVAL TSTEMPNAME = PGMEMPNAME

C EVAL *INLR = *ON

7. SQL Cursor:

We have RPG programs that use SQL cursors to sequentially retrieve data. If a
program cancels and I call it again, the program resumes processing a cursor where

Page 106 of 250

As400 Stuff

it left off. I have to sign off and back on in order to restart from the top. Why
doesn't the program start over from the beginning of the returned data set?

The behavior you're witnessing comes from three contributing factors. First, your
program was compiled to close the cursor when the activation group is destroyed.
Second, your program is running in the default activation group. Third, you are not
checking the open of the cursor to determine whether it succeeds or fails.
Fortunately, this is an easy problem to fix.
Let's look at a program like the ones Lynne is talking about.
Fqsysprt o f 132 printer
F
D zInput ds inz
D zCustNumber 6p 0
D zLastName 8a
D zInitials 3a
D zBalanceDue 7p 2
D zCreditDue 7p 2

D Ratio s 3p 0

 /free
 exec sql
 declare c1 cursor for
 SELECT cusnum, lstnam, init, baldue, cdtdue
 FROM qiws/qcustcdt
 ORDER BY 1;

 exec sql
 open c1;

 dow '1';
 exec sql
 fetch c1 into :zInput;
 if sqlstt >= '02000';
 leave;
 endif;
 eval(h) Ratio = zCreditDue / zBalanceDue * 100;
 except pline;
 enddo;

 *inlr = *on;
 /end-free

Oqsysprt e pline 1

Page 107 of 250

As400 Stuff

O zCustNumber
O zLastName + 1
O zInitials + 1
O zCreditDue j + 1
O zBalanceDue j + 1
O Ratio j + 1
Notice the eval within the do-while loop. I've included this line of code in order to
make the program cancel.
Here's the result set from running the query. This is the data that the program
reads as input.
CUSNUM LSTNAM INIT BALDUE CDTDUE
192837 Lee F L 489.50 .50
389572 Stevens K L 58.75 1.50
392859 Vine S S 439.00 .00
397267 Tyron W E .00 .00
475938 Doe J W 250.00 100.00
583990 Abraham M T 500.00 .00
593029 Williams E D 25.00 .00
693829 Thomas A N .00 .00
839283 Jones B D 100.00 .00
846283 Alison J S 10.00 .00
938472 Henning G K 37.00 .00
938485 Johnson J A 3,987.50 33.50
The first time I call the program, I get the following output, followed by escape
message MCH1211, which tells me that the program attempted to divide by zero.
192837 Lee F L .50 489.50 0
389572 Stevens K L 1.50 58.75 3
392859 Vine S S .00 439.00 0
The second time I call the program, I get the following output before I get another
MCH1211.
475938 Doe J W 100.00 250.00 40
583990 Abraham M T .00 500.00 0
593029 Williams E D .00 25.00 0
Notice that the second run of the program did not begin with the first record of the
result set.
The program was compiled to close the cursor when the activation group is
destroyed. The system destroys named activation groups when the last program in
the activation group ends. However, the default activation group, which is intended
for use only with OPM programs, is destroyed only when the job ends. Therefore,
the cursor remained open between invocations.
If I had checked the SQL status variable, SQLSTT, after the open during the first call,
I would have found that SQLSTT contained a value of five zeros, meaning that the
open succeeded. But SQLSTT would have had a value of 24502 after the open in
the second call, meaning that the cursor was already open in the activation group.

Page 108 of 250

As400 Stuff

So, how do I fix the problem?
The simplest fix is to change the program so that it closes the cursor when the
module ends. I do that by adding the following code to the top of the calcs in the
RPG program.
exec sql
 set option closqlcsr=*endmod;
You should also consider running the program in a named activation group. You can
easily do this by adding an H spec to the program.
 H dftactgrp(*no) actgrp(??????)
I'll leave it to you to think about what activation group name you should replace the
questions marks with. If an RPG program is a standalone application, you can use
*NEW.
Also, I encourage you to check the status of the open and to end the program
gracefully if it has a value greater than or equal to 02000.
exec sql
 open c1;
if sqlstt >= '02000';
 // do something to handle the failed open

8. Sample imbedded SQLRPGLE program
Sample imbedded, or embedded, SQLRPGLE program:

 H ActGrp(*CALLER)

 H DftActGrp(*NO)

 D OpenCursor PR n

 D FetchCursor PR n

 D CloseCursor PR n

 D MyLib s 10a

 D MyFile s 10a

 /free

 *inlr=*on;

 if not OpenCursor();

 // perform error routine to alert the troops

 // ...

Page 109 of 250

As400 Stuff

 Else;

 Dow FetchCursor();

 // putting the fetchcursor on the do loop allows the user of

 // iter, and thus iter will not perform an infinite loop

 // normal processing here...

 EndDo;

 CloseCursor();

 EndIf;

 return;

 /end-free

 P OpenCursor B

 D OpenCursor PI like(ReturnVar)

 D ReturnVar s n

 C/EXEC SQL

 C+ Set Option

 C+ Naming = *Sys,

 C+ Commit = *None,

 C+ UsrPrf = *User,

 C+ DynUsrPrf = *User,

 C+ Datfmt = *iso,

 C+ CloSqlCsr = *EndMod

 C/END-EXEC

 C/EXEC SQL

 C+ Declare C1 cursor for

 C+ Select System_Table_Schema as library,

Page 110 of 250

As400 Stuff

 C+ System_Table_Name as file

 C+ from qsys2/systables

 C/END-EXEC

 C/EXEC SQL

 C+ Open C1

 C/END-EXEC

 /free

 Select;

 When SqlStt='00000';

 return *on;

 Other;

 return *off;

 EndSl;

 /end-free

 P OpenCursor E

 /eject

 P FetchCursor B

 D FetchCursor PI like(ReturnVar)

 D ReturnVar s n

 C/EXEC SQL

 C+ Fetch C1 into :MyLib, :MyFile

 C/END-EXEC

 /free

 Select;

 When sqlstt='00000';

Page 111 of 250

As400 Stuff

 // row was received, normal

 ReturnVar=*on;

 When sqlstt='02000';

 // same as %eof, sooner or later this is normal

 ReturnVar=*off;

 Other;

 // alert the troops!

 ReturnVar=*off;

 EndSl;

 return ReturnVar;

 /end-free

 P FetchCursor E

 /eject

 P CloseCursor B

 D CloseCursor PI like(ReturnVar)

 D ReturnVar s n

 C/EXEC SQL

 C+ Close C1

 C/END-EXEC

 /free

 Select;

 When sqlstt='00000';

 // cursor was closed, normal

 ReturnVar=*on;

 Other;

Page 112 of 250

As400 Stuff

 // alert the troops!

 ReturnVar=*off;

 EndSl;

 return ReturnVar;

 /end-free

 P CloseCursor

9. Embedded SQL:

Integration of sql in traditional sql rpg application.

Static:

➢ SQL statement defined when program is compiled.
➢ Files and fields are established before program executes.
➢ SQL Pre-compilation takes place.

Dynamic:

➢ SQL statement defined during program execution.
➢ Files and fields are not established before program executes.
➢ No SQL Pre-compilation takes place.

Journal

1. What is the journal?
Any changes in PF will be recorded. A journal is an object of type *JRN

which detects and records that cause a PF to change.

The information recorded by the journal is stored in an object *JRNRCV
called journal receiver.

2. What are the various steps creating journal?
 The steps to start journaling

✔ Create a journal receiver - CRTJRNRCV
✔ Create a journal - CRTJRN
✔ Start journaling of a PF - STRJRNPF
✔ Backup the PF - SAVOBJ

 The steps to end journaling
✔ End journaling a PF -ENDJRNPF
✔ Delete a journal -DLTJRN
✔ Delete the last journal receiver -DLTJRNRCV
✔ Save journal receivers -SAVOBJ

 The commands used for housekeeping purposes

Page 113 of 250

As400 Stuff

✔ Change journal -CHGJRN
✔ Save object -SAVOBJ
✔ Delete a journal receiver -DLTJRNRCV

 The commands used in case of a failure are
✔ Display journal entries -DSPJRN
✔ Apply journal changes -APYJRNCHG
✔ Remove journal changes -RMVJRNCHG
✔ Restore a saved object -RSTOBJ

1. Explain Commitment Control?
The AS/400 system has an integrated transaction recovery function called

commitment control. Commitment control is an extension of the journal function on
the system.

The records used during a complex transaction are locked from other user
and at the end of the transaction; the program issues the commit operation,
updating the records.

 If the system fails before the commit operation is performed, all database
changes are rolled back to the previous commit operation and all the affected
records are unlocked.

COMMIT-The transactions are updated in the data file. Commit occurs on
COMMIT command

ROLLBACK- The transactions are NOT updated in the data file. Rollback
occurs if there are uncommitted transactions and on ROLLBACK command.

2. Can anybody tell why Journaling is compulsory before Commitment
Control?

Commitment ctrl is use to save /rollback the group of changes and Journaling is use
to save the changed records in Journal receiver.

3. Commitment control Implementation and controlling commitment
control from external program.

1. CRTJRNRCV
2. CRTJRN
3. STRJRN
4. STRCMTCTL (in CL program)
5. Declare file with keyword COMMIT and in program use
Commit and Rollback based on processing logic (i.e. after successful execution use
Commit and when invoked exception handling then use rollback).
6. ENDCMTCTL

Data Areas, Queues, Arrays & Structures:

Page 114 of 250

As400 Stuff

1. What is the data area?
A data area is an object used to store data for access by any job running on

the system. It is permanent storage. A data area can be used whenever you need
to store information of limited size, independent of the existence of the programs or
files.

 Typical uses of data areas are:
➢ To provide an area to pass information within job.
➢ To provide a field that is easily and frequently changed to

control references within a job such as supplying the next
check number.

➢ To provide a constant field for use in several jobs, such as
tax rate

➢ To provide limited access to a large process that requires the
data area.

➢ A data area can be locked to a single user, thus preventing
other users from processing at the same time.

 To create a general data area use the command (CRTDTAARA)
 To retrieve values from data area use (RTVDTAARA)
 To change this value, use (CHGDTAARA)
 To display the current value, use (DSPDTAARA)
 To delete a data area use (DLTDTAARA)
 Type of data area created by the system

➢ Local data area
➢ Group data area
➢ Program initialization parameter (PIP) data area

SKANDASAMO/RPGILE

 DAREA

 *************** Beginning of data ******************************

0001.00 DS S 10A

0002.00 DG S 10A INZ ('I HATE YOU')

0003.00 C *DTAARA DEFINE DATA1 S

0004.00 C *LOCK IN S

0005.00 C EVAL S=G

0006.00 C OUT S

0007.00 C S DSPLY

0008.00 C SETON LR

Page 115 of 250

As400 Stuff

****************** End of data ***********************************

OUTPUT

DSPLY I HATE YOU

AUTO NUMBER GENERATION

 SKANDASAMS/TEST

 TESTEX19

 *************** Beginning of data *******************************

0001.00 DA S 4S 0

0002.00 C *DTAARA DEFINE DATA2 A

0003.00 C *LOCK IN A

0004.00 C EVAL A=A+1

0005.00 C OUT A

0006.00 C A DSPLY

0007.00 C SETON LR

 ****************** End of data ***********************************

OUTPUT

DSPLY 5

DSPLY 6

2. Define LDA, GDA, and PIP?
 LOCAL DATA AREA (LDA)

✔ A local data area is created for each job in the system
automatically, when you submit a job.

✔ Only one LDA can be created by submitting a job.
✔ The system create a local data area, which is initially filled with

blanks, with a length of 1024 and type *CHAR.
✔ When you submit a job using SBMJOB command, the value of the

submitting job’s local data area is copied into the submitted job’s
local data area.

✔ You can refer to your job’s local data area by specifying *LDA for
the DTAARA keyword on the CHGDTAARA, RTVDTAARA, and

Page 116 of 250

As400 Stuff

DSPDTAARA commands or *LDA for the sub string built-in function
(%SST)

✔ The following is true of a local data area:
➢ The local data area cannot be referred to from any other job.
➢ You cannot create, delete or allocate a local data area.
➢ We can to change the contents of LDA by the by using

CHGDTAARA command.
➢ No library is associated with the local data area.

✔ ACCESSING LDA:
➢ CHGVAR VAR (%SST (*LDA 3 5)) VALUE(123)

OR

➢ CHGDTAARA DTAARA (*LDA (3 5)) VALUE(123)
➢ CHGVAR VAR (&ROLNO) VALUE (%SST (*LDA 3 5))

OR

➢ RTVDTAARA DTAARA (*LDA (3 5)) RTNVAR (&ROLNO)

 GROUP DATA AREA (GDA)
✔ The system creates a group data area when an interactive job

becomes a group job.
✔ Only one group data area can exist for a group.
✔ The group data area is deleted when the last job in the group is

ended, or when the job is no longer part of the group job.
✔ A group data area, which is initially filled with blanks, has a length

of 512 and type *CHAR.
✔ The following is true for a group data area

➢ You cannot use the group data area as a substitute for a
character variable on the sub string built-in function.

➢ A group data area cannot be referred by jobs outside the
group.

➢ You cannot create, delete, or allocate a group data area
➢ No library is associated with a group data area.

✔ Example
CHGDTAARA DTAARA (*GDA) VALUE (‘DECEMBER 1996’)

RTVDTAARA DTAARA (*GDA) RTNVAR (&GRPARA)

 PROGRAM INITIALIZATION PARAMETER (PIP) DATA AREA
✔ A PIP data area is created for each pre-started job when the job is

started.
✔ The object sub-type of the PDA is different than a regular data

area.
✔ The PIP can only be referred to by the special value name *PDA.

Page 117 of 250

As400 Stuff

✔ The size of the PDA is 2000 bytes but the number of parameter
contained in it is not restricted.

2. What is the data queue?
✔ It is a temporary storage. We can able to store and retrieve the

data, but once data is retrieved the data is lost.
✔ First create the data queue by using CRTDTAARA command
✔ Sending a message to a data queue (QSNDDTAQ, QRCVDTAQ, And

CLRDTAQ)
Data query is nothing but a queue in which are program can send a data and
other program or the same program can receive the program. QSNDDTAQ is
stored in QSYS.

2. Explain QSNDDTAQ and QRCVDTAQ?
 QSNDDTAQ

✔ By using this command sent data same / another program.
✔ QSNDDTAQ PARM (QUEUE NAME LIB &LEN &DAT)

 QRCVDTAQ
✔ By using this command receive data same /another program
✔ QRCVDTAQ PARM (QUEUE NAME LIB &LEN &DAT &WAIT)

2. What are the mandatory parameters for declaring a Data queue?

✔ QUEUE NAME
✔ LIB NAME
✔ LENGTH
✔ DATA
✔ WAIT

2. What is the command to create menu?
CRTMNU – Create Menu

3. What is the difference between CALL and Transfer Control (TFRCTL)?
CALL TFRCTL

1.Call will transfer the control
according with the CALL STACK

Transfer Control (TFRCTL) will remove
the CALL STACK and transfer the
control to the calling program.

2. The CALL is used to different types
of programs.

Ex: RPGILE/400, CL/400, C/400,
COBOL/400.

TFRCTL is only used in CL programs.

Page 118 of 250

As400 Stuff

4. Explain Multi Dimensional Array?
➢ The multi dimension data structure array will be implemented in occur

class.
➢ The similar elements of same data type and same attributes size

repeating many times this time using Occur opcode.
➢ Can only be used with a multiple occurrence data structure, allow you to

specify which occurrence of data structure is used for subsequent
operation within the programs.

2. Define data structure and types of data structure?
The different types of fields and sub fields are stored in a single area. This

area in storage is called data structure. Data structure means program allows you
to define an area in storage and the layout of the fields, called sub fields, with the
area. This area in storage is called a data structure.

Data structure can be used for

✔ Group non-contiguous data into contiguous internal storage locations
✔ Define the same internal area multiple times using different data formats.
✔ Operate on a field and change its contents
✔ Divide a field into sub fields without using the MOVE or MOVEL
✔ Define a data structure and its sub fields in the same way a record is

defined.
✔ Define multiple occurrences of a set of data
There are four different types of data structure commonly used.

 General data structure
 Data area data structure
 File information data structure

 Program status data structure
Data structure can be specified in D spec

Type IPDS

Data structure name

I –Globally initialized data structure

S--Program status data structure

U--Data area data structure

 Blanks—General (or) File status data structure

 Data area data structure
A data area data structure, identified by a U in position 18 of the data

structure statement, indicates to the RPGLE program that if should read in and
lock the data area of the same name at program at program initialization and
should write out and unlock the same data area at end of the program.

Page 119 of 250

As400 Stuff

The data area and data area structure must have the same name unless
you rename the data within the program by using the *NAMVAR DEFINE
statement.

 File information data structure
A file information data structure provides you with status information on file

exception /error occurs. This data structure name must be unique for each file. It
consists of pre defined sub fields that provide information on the file
exception/error that occurred.

 Program status data structure
This data structure is identified by as S in position 18 of the data structure

statement, provides program exception/error information to the program. The
*ROUTINE, *STATUS, *PARM keywords mostly preferred to determine the PS DS.

 Example

 SKANDASAMO/DATASTR

 DUMP

 *************** Beginning of data *************************

0001.00 HDEBUG (*YES)

0002.00 DPSSR SDS

0004.00 DSTATUS *status

0005.00 DROUTINE *routine

0005.01 DPARMS *parms

0005.02 DRES S 2S 0

0007.00 C Z-ADD 1 NUM1 2 0

0007.01 C Z-ADD 0 NUM2 2 0

0010.00 C EVAL RES=NUM1/NUM2

0011.00 C 'NOTCOM' DSPLY

0012.00 C A TAG

0013.00 C 'COMING' DSPLY

0014.00 C SETON LR

0015.00 C *PSSR BEGSR

Page 120 of 250

As400 Stuff

0016.00 C STATUS DSPLY

0017.00 C ROUTINE DSPLY

0018.00 C PARMS DSPLY

0019.00 C DUMP

0020.00 C GOTO A

0021.00 C ENDSR

 ****************** End of data ******************************

Output

DSPLY 102

 DSPLY *DETC

 DSPLY 0

 DSPLY COMING

2. How do I declare an array with a dynamic number of elements?

In RPG IV, the new (V3 R7) ALLOC, REALLOC and DEALLOC operation codes
can be used to allocate memory. This means that at run time, you can go out to the
system and ask it to assign storage to the program that was not allocated to the
program when it was evoked.

These operation codes can be used to allocate memory up to 16MB. The allocation
can be assigned to a pointer variable. In RPG IV, pointers have the data-type of
asterisk (*). All that is needed is to allocate memory to a pointer that is used with
the BASED keyword of the desired dynamic array. The example that follows
illustrates this technique:

.....DName+++++++++++EUDS.......Length+TDc.Functions+++++++++++++
+++++
 D DynoArr S 7P 0 Dim(10000) based(pDynoArr)
 D nSize S 10i 0

.....CSRn01..............OpCode(ex)Extended-factor2++++++++++++++++++
 C Eval nsize = %size(DinoArr) * 64
.....CSRn01Factor1+++++++OpCode(ex)Factor2+++++++Result+++++++
+Len++DcHiLoEq
 C Alloc nSize pDynoArr
 ** We now have enough storage allocated for 64 elements.

Page 121 of 250

As400 Stuff

 C Eval nsize = %size(DinoArr) * 70
 C ReAlloc nSize pDynoArr
 ** We have changed the allocation to enough storage for 70 elements
 C* ... code to use the array goes here...
 C Dealloc(N) pDynoArr
 ** We have just returned the storage to the system.

To increase or decrease the number of elements in the dynamic array, use
the REALLOC operation code. Simply change the number of bytes that need to be
allocated, and call REALLOC with the new size in Factor 2 and the original pointer
variable in the Result field. REALLOC allocates new storage of the size specified,
and copies the original data to that new location. Then it frees ("deallocates") the
original storage.

IMPORTANT: Always remember to DEALLOC anything you ALLOC. That is
always free up memory that you have allocated otherwise memory leaks will be
created.

If you are not on V3 R7, you can still use dynamic memory by calling one of
the system APIs or linking into the QC2LE binding directory and calling the C
runtime MALLOC and DEALLOC functions.

3. Data structure array basics
It's all pretty straightforward. If MyDS is a data structure array of 10
elements, then MyDS(5) will access the fifth element of that data structure
array. But how do you access the subfields? That requires a bit more
discussion.
When you define a data structure array, you not only use the Dim keyword,
but you must also specify the qualified keyword. The Qualified keyword
was introduced in V5R1, and it allows you to specify the name of a data
structure subfield qualified by the name of the data structure. For example,
if data structure MyDS is defined with the qualified keyword and it contains
a subfield named Subfield1, then you would use the following notation to
access the subfield:
MyDS.Subfield1
If data structure MyDS is also defined with the Dim keyword, then
something like the following notation is used to access subfields in a specific
element:
MyDS(5).Subfield1
In this example, you would be accessing the subfield named Subfield1 in the
fifth element in the data structure array MyDS.

4. Clear up the confusion over multiple-occurrence data structures
over the past few months I have detected a hint of confusion about

Page 122 of 250

As400 Stuff

multiple-occurrence data structures with regard to data structure
arrays. While the two have some dissimilarities, data structure arrays
are essentially and technically the same as multiple-occurrence data
structures.

More precisely, multiple-occurrence data structures are, and have always
been, data structure arrays; they were just implemented poorly and given a
goofy IBM name. Of course, this was the result of the six-character limit on
field names and on the Result Field column. Under the covers, data structure
arrays and multiple-occurrence data structures are implemented almost
identically. You see, a data structure is a high-level language (HLL)
construct; there is no such thing as a data structure down at the machine
interface (MI) level. That means all data structures must be implemented in
a simulated fashion, regardless if they are simple data structures, multiple-
occurrence data structures or data structure arrays. Interestingly, the MI
language does contain arrays -- and fairly sophisticated ones at that. So,
once a data structure is defined at the MI level, making it into an array is
fairly straightforward.
Thankfully, we (i.e., the RPG language) have evolved to where we can
actually call data structure arrays "arrays" instead of "multiple-occurrences."
Unfortunately, most, if not all, of the documentation has not. I have yet to
find one definitive statement that explains, for example, that multiple-
occurrence data structures are often interchangeable with data structure
arrays, such as when passed as parameters.
Arrays (this includes multiple-occurrence data structures because
remember, they are arrays) are stored in one chunk of contiguous storage.
There are no extra spaces in between the individual elements of the array
unless you specify alignment; that is, the compiler will not add any extra
space that you don't ask for. Therefore, in storage, a multiple-occurrence
data structure looks exactly like a data structure array.
Another good example of the documentation being out of date is the SQL
Reference. In the "ILE RPG," it discusses using multiple-occurrence data
structures for multiple-record fetches. However, it makes no mention of
using data structure arrays as an alternative, never mind that using data
structure arrays is actually a better alternative.
Always use data structure arrays
if you are in charge of setting programming practices and standards in your
shop, you should insist that data structure arrays are used instead of
multiple-occurrence data structures whenever possible. They are much
simpler to code, and they are much less prone to bugs.

"CLEAR" advantage over resetting work fields

Page 123 of 250

http://search400.techtarget.com/tip/1,289483,sid3_gci843891,00.html

As400 Stuff

Use the "CLEAR" operation code to clear the fields in a single-occurrence
data structure or multiple-occurrence data structures.
Pass larger amounts of data between programs
when using separate programs to retrieve and display data, use arrays or
multiple-occurrence data structures to pass back larger amounts of data
strings.

5. Data area, Data Queue and Message Queue:
Data area size is defined while creation and if the data of the same size is
put on the data area the previous data would get overwritten. For example
we have a data area of size 512. First time you have moved the value of size
512. If you try to move some other data of the same size (512) the second
time, then the first data would be lost since it gets overwritten by the latest
one. But data will be present in the data area even after several retrievals.

On the other hand, we define the size of the data the data queue can hold at
the time of creation. The data queue will grow as and when new data comes
in. The number of data in the data queue is not fixed while creation and the
number of data it can hold depend upon the system space. It is just like the
normal queue, it grows when new data comes in. We just set the size of one
data and not the size of the data queue.
For example you have created a data queue of size 100. If you move data for
the first time it will be stored in the first position. Then if you move the
second data it will be stored in the second position and so on. Depending
upon the method (FIFO, LIFO or keyed) specified at the time of creation, for
retrieving data the data will be fetched.
After the data is retrieved once (via receive data queue command) it will be
lost. It will be present in the data till the first retrieval.
In the message queue the message will be present even after several
retrievals.

6. Group Jobs and Group data area:

Group data area is created by the system when an interactive job becomes a
group job.
Group job is nothing but another job with the same job name but with a
different job number. You will have 2 sessions in the same session itself.
Example:

Page 124 of 250

http://search400.techtarget.com/tip/1,289483,sid3_gci832753,00.html

As400 Stuff

Assume that you have a session with the Job: QPADEV0008 and the Number:
946578 (Do a Shift+F3 to get this information after logging in). After
creating multiple jobs the job name will be the same but we will have
different job numbers for each session.
Try to display the contents of *LDA and *GDA.
DSPDTAARA *LDA
Will display the contents of local data area
But DSPDTAARA *GDA will give an error message (DTAARA(*GDA) not valid
because job not group job) since this job is not an interactive job.
Change the interactive job to group job (TSTGRPJOB) like this.
CHGGRPA GRPJOB(TSTGRPJOB) MSGQ(*NONE)
Now try DSPDTAARA *GDA. It will work, because the interactive job is now
changed to a group job.
Now we have one group job TSTGRPJOB. We are creating another group job
like this to explore the group job concept.
Give the command TFRGRPJOB GRPJOB(*SELECT) and press Enter. Then
Press F6 to Start a new group job.
Give the following details and Press Enter.

Group job GRPTEST2
Initial group program QCMD
Note: Instead of QCMD you can give a program name as well. After the
program ends the job will end and control will come back to the previous job
from where the TFRGRPJOB is issued.
If you Signoff from any group job session then all the jobs will be ended
since signing off from that job closes the *GDA which internally ends all the
jobs present in that group.
Note:
If you do it with Shift + Esc + 1 we can have 2 sessions only with the same
job name.
Shift + Esc + 1 will take you to sign on screen. You can login to go to the
second session (meaning second job with the same job name and a new job
number), you will be in the same session even now. If you sign off from that
session you will go the first session (place where you gave Shift + Esc + 1)
and not to the Sign on screen – But it is not a group job, we are just
accessing 2 sessions from the same session itself and there is no provision
of switching between the sessions. After completing the work in the second
session you have to signoff to come to the first session. It is just an option to
have one more session inside the same session rather than opening a new
session. That’s all.

Page 125 of 250

As400 Stuff

 But with group job concept we can have up to 32 sessions in the same
session. With transfer group job command we can go to different sessions.

7. Data Structure Array and Example:

D Ds_Array DS Dim(25) Qualified

D Ds_Fld1 5A

D Ds_Fld2 5S 0

C Eval Ds_Array(1).Ds_Fld1 = 'TEST'

C Eval Ds_Array(1).Ds_Fld2 = 12345

C Eval *Inlr = *On

8. Difference between Data area and data queue:

Data area: Data will not be lost after it is accessed.
Data queue: Data will be lost after QRCVDTAQ is executed, meaning data
will be lost from the data queue after it is received.

9. Difference between data-structure array and multi occurrence
data structure

Data-structure array: Subfield names can contain more than six
characters.
MODS: Subfield names cannot contain more than six characters.

10.RPG data structure arrays improvement over multiple-
occurrence data structures

In case you haven't yet heard the news, the ILE RPG compiler now supports
-- as of V5R2 data structure arrays. That is, you can now specify the Dim
keyword on the definition of a data structure to dimension that data
structure. Just as you can dimension a stand-alone field to create an array of
that type of field, you can now dimension a data structure to create an array
of that kind of data structure.

11.Compile time array, pre run time array run time array

Page 126 of 250

As400 Stuff

Compile time array is the array which is declared with all the actual values in
the program using CTDATA

Pre run time array: It is loaded from a column of physical file

Run time array: values are loaded in the array during execution time

You define array on "D" Specification you can load data into an array at
compile, with value entered at end of the program is called = Compile time
array.

You define array on "D" Specification you can load data into a array at
compile, with value obtained from a File is called = Pre-Runtime Array

Arrays can be loaded with values during the program execution this is called
= Runtime Array

Small correction about pre run time array:

The file used as input must be a sequential program described file. DURING
INITIALIZATION, BUT BEFORE ANY INPUT, CALCULATION, OR OUTPUT
OPERATIONS ARE PROCESSED the array is loaded with initial values from the
file. By modifying this file, you can alter the array’s initial values on the next
call to the program, WITHOUT RECOMPILING the program.

12.RNF7701 data structure not allowed

I'm using a data structure for me READ/WRITE/READP operations but I
keep getting RNF7701 - Data structure not allowed. Here's the code:

 FWMERLGP if a e k disk

 d Q e DS EXTNAME(WMERLGP:WMERLG:*INPUT)
 d QUALIFIED

 d next_eid pr 11s 0
 d $err s n

 /free

Page 127 of 250

As400 Stuff

 setgt *hival wmerlgp;
 // read into a ds so as not to disturb the
 // global file fields
 readp wmerlg Q;
 // RNF7701 here!

The answer is that the compiler wants you to use LIKEREC instead of
EXTNAME.
Try
 d Q Ds LikeRec(WMERLG : *Input)

DEBUG

1. How to Debug a Batch ILE RPG?

1. Compile your ILE source using DBGVIEW (*SOURCE) OPTION
(*SRCSTMT:*NODEBUGIO)

2. Hold the job queue where the program will be submitted

3. Submit the job

4. Hold the submitted job

5. Release the jobq, and if required change the jobq.

6. Start servicing the submitted job using STRSRVJOB JOB
(number/user/name) (Start Service job), where "number", "user' and
"name" are attributes retrieved from the submitted job.

7. Start the debugger using STRDBG PGM (library/program) UPDPROD
(*YES) (Start Debug)

8. You are now in the display module source. Don't try to debug or add
breakpoints. It's too early. The job must be active before. Leave this
screen using F12.

9. Release the held job.

10. When the job is activated, the start service job window comes. Use

Page 128 of 250

As400 Stuff

F10 to enter debug command.

11. Use DSPMODSRC (Display module source) command to go back to the
source and add breakpoint wherever you want, using F6

12. Use F12 to resume the job, and F12 once again to go back to the start
service job window.

13. Use Enter to launch the job.

14. The process breaks at the first breakpoint installed and gives you the
control.

15. Debug....my friend

16. When the job is finished, you receive a 'Job being serviced ended'
message.

17. Use ENDDBG command to end debug.

18. Use ENDSRVJOB to end servicing

2. Debug value of pointer?

When debugging ILE RPG code, to see what a pointer is pointing to, you can
use :x or :c when using the EVAL debugger command on the pointer itself.
This means you can debug a pointer's value without having an RPG BASED
variable.

This shows the first 10 bytes that "ptr" is pointing to, as character data:
===> EVAL ptr:c 10

This shows the first 10 bytes that "ptr" is pointing to, in hex: ===> EVAL
ptr:x 10

This is useful when the pointer is pointing to data that is not readable as
character data—

3. How do I debug ILE programs? STRISDB doesn't work!

Be sure you compile your program with an option that allows the debugger
to "see" the source: DBGVIEW(*LIST) will require access to the source at run-
time, while DBGVIEW(*LIST) inserts a copy of the compile listing right into
the object code, so no access to the source is needed at run-time.

Page 129 of 250

As400 Stuff

After that, the basic sequence of events is to STRDBG, set the breakpoints,
hit F3 back to the command line and call your program.

Detailed steps:

1. STRDBG - you may need to specify UPDPROD(*YES), but please be
very careful debugging in a production environment!

2. Set breakpoints. Position the cursor on a line where you want a
breakpoint. Press F6. The debugger will stop before this line is
executed. Set as many as you need.

3. If you are debugging a service program, press F14 to see a screen
where you can add the service program (*SRVPGM) to the list of
modules under debug control. Use option 5 on the module line to enter
the source and set breakpoints. Press F14 to get back to the original
source.

4. Exit the STRDBG session and get back to the command line.

5. Call your program the way you normally would; from a menu or
command line. You don't necessarily need to call the program under
debug; if it's the third one in a series, you can call the first one and let
the programs progress as normal.

There are a few differences between STRISDB and STRDBG: STRISDB WATCH
has no equivalent. WATCH under STRDBG will break when a watched
variable changes.

You don't display variables with the "D" command; it's EVAL under STRDBG.
To see a variable in hex, do an eval varname:x. You don't set a value with
"c", you use EVAL; eval varname = 'OPEN'. Look at the help for commands
on the command line for a quick reference of the available commands.
Check the language reference manual for details of how to use the debugger
with your target language.

1. How can I debug an ILE program in batch?

Brad Stone has a FAQ entry that addresses this:
http://bvstools.com/faq.html#RPG

Using the green screen debugger:

1. Submit your program to batch. The job MUST be held. You can either
hold the job queue (HLDJOBQ) or hold the individual job (HLDJOB) or
specify HOLD(*YES) on the SBMJOB command.

2. WRKSBMJOB/WRKUSRJOB/WRKACTJOB and find your submitted job.
Note that the SBMJOB command gives you an informational message

Page 130 of 250

As400 Stuff

with the job name/number. What you need is the job name, user ID
and job number - the fully qualified job name. Example:
123456/BUCK/MONTHEND

3. STRSRVJOB on the held batch job.

4. STRDBG on your program. Specify UPDPROD(*YES) if needed. You'll
see the source listing if you compiled with DBGVIEW(*LIST) or
*SOURCE.

5. Press F12 to exit - you cannot set a breakpoint yet.

6. Release the job so that it becomes STATUS(*ACTIVE).

7. You'll see a display asking if you want to debug or continue. Press F10
to debug.

8. DSPMODSRC to see the source listing again. Alternately, press F10 to
step into the first instruction.

9. Now you can add your breakpoints.

10.Press F3 until you're back to the "debug or continue" display. Press
Enter to run the program with your breakpoints set.

11.When you're done, do an ENDDBG and ENDSRVJOB.

Using the IBM Distributed Debugger:

1. SBMJOB CMD(CALL PGM(yourlib/yourpgm)) JOBQ(yourlib/yourjobq)
HOLD(*YES)

2. Start your Code debugger from Start->Programs->WebSphere
Development... ->IBM Distributed Debugger->IBM Distributed
Debugger

3. Select the debugger Start up window and key into the job name entry
field */##########/* where ########## is your user id.

4. You may have to log in and specify the AS/400 system name.

5. Select the job that is being held in yourjobq.

6. Click the ok push button.

7. Enter the library and program name into the Program entry field

8. Click the Load push button on the debugger Startup information
window. A debugger message will appear telling you to start the
program.

9. Click Ok on the message push button, even though it tells you to start
your program first.

Page 131 of 250

As400 Stuff

10.Switch to a 5250 emulation window.

11.WRKJOBQ JOBQ(yourlib/yourjobq)

Release your job.

1. How can I debug an OPM program in batch?

You can follow the steps in How can I debug an ILE program in batch? And
use the old (no source) debugger STRDBG.
Mike Barton suggests compiling the program with OPTION (*SRCDEBUG) and
then using STRDBG OPMSRC(*YES), which should work with the steps given
above.
STRISDB won't work unless the job is running, so you can't put it on hold and
enter your break points.
Martin Rowe contributed the following idea: Insert a simple CL program into
your RPG that waits for you to answer a message. This way, the job is
running, but not processing yet. (RPG400-L 24 May 2001)
Here is an adaptation of his idea:
Here's the RPG program you're trying to debug:
 H 1
 C CALL 'DBGWAIT'
 C Z-ADD1 X 50
 C SETON LR
I've inserted "CALL 'DBGWAIT'" and re-compiled.
Here's the source for DBGWAIT:
pgm

dcl &reply *char 1

sndusrmsg msgid(CPF9898) +
 msgf(QCPFMSG) +
 msgdta('Paused for debug') +
 msgrpy(&reply)

endpgm
STRISDB PGM (BATCHOPM) UPDPROD (*NO) INVPGM (*NO) SRVJOB
(*SELECT) you’ll see a list of all active jobs on your system. Select the one
you're trying to debug. You'll get a message saying that the program is in
debug mode. Answer the "paused for debug" message, and the source will
pop up after the call to DBGWAIT.

Page 132 of 250

http://faq.midrange.com/data/cache/109.html
http://faq.midrange.com/data/cache/109.html

As400 Stuff

2. How can I tell if my program is running in batch or interactive?

Here's a program that uses the QUSRJOBI API. After calling the API, the Job
Type field (QUSJT04) will contain a B for batch or I for interactive. If you don't
pass the internal job name (don't pass anything) it will retrieve information
about the current job.

DQUSI020000 DS
D* Qwc JOBI0200
D QUSBR01 1 4B 0
D* Bytes Return
D QUSBA01 5 8B 0
D* Bytes Avail
D QUSJN03 9 18
D* Job Name
D QUSUN03 19 28
D* User Name
D QUSJNBR03 29 34
D* Job Number
D QUSIJID01 35 50
D* Int Job ID
D QUSJS05 51 60
D* Job Status
D QUSJT04 61 61
D* Job Type
D QUSJS06 62 62
D* Job Subtype
D QUSSN 63 72
D* Subsys Name
D QUSRP01 73 76B 0
D* Run Priority
D QUSSPID00 77 80B 0
D* System Pool ID
D QUSCPUU00 81 84B 0
D* CPU Used
D QUSAIOR 85 88B 0
D* Aux IO Request
D QUSIT 89 92B 0
D* Interact Trans
D QUSRT 93 96B 0

Page 133 of 250

As400 Stuff

D* Response Time
D QUSFT 97 97
D* Function Type
D QUSFN15 98 107
D* Function Name
D QUSAJS 108 111
D* Active Job Stat
D QUSNDBLW 112 115B 0
D* Num DBase Lock Wts
D QUSNIMLW 116 119B 0
D* Num Internal Mch Lck Wts
D QUSNDBLW00 120 123B 0
D* Num Non DBase Lock Wts
D QUSTDBLW 124 127B 0
D* Wait Time DBase Lock Wts
D QUSTIMLW 128 131B 0
D* Wait Time Internal Mch L
D QUSNDBLW01 132 135B 0
D* Wait Time Non DBase Lock
D QUSERVED45 136 136
D* Reserved
D QUSCSPID 137 140B 0
D* Current System Pool ID
D QUSTC01 141 144B 0
D* Thread Count
DQUSEC DS 116 inz
D QUSBPRV 1 4B 0 inz(116)
D QUSBAVL 5 8B 0 inz(0)
D QUSEI 9 15
D QUSERVED 16 16
D QUSED01 17 116

D FormatName S 8 Inz('JOBI0200')
D InJobName S 26
D IntJobName S 16
D JobName S 26 Inz('*')
D Outcount S 5 0
D ReceiveLen S 10i 0 Inz(187)

c *entry Plist
c Parm InJobName

Page 134 of 250

As400 Stuff

c If %parms > 0
c Eval JobName = InJobName
c Endif

 * Call the api to get the information you want
C Call 'QUSRJOBI'
C Parm QusI020000
C Parm ReceiveLen
C Parm FormatName
C Parm JobName
C Parm IntJobName
C Parm QusEc
c Eval *inlr = *o

3. How to debug jobs in MSGW without ending it?

You have to process in three steps:
1) Get the Name/User/Number of the job in Message Waiting status.
 You can find this by the WRKACTJOB command, and then press 5 in front of
the job. On the top of the screen, you get those information’s.
2) Service the job with the command: STRSRVJOB
JOB(JOBNAME/USER/NUMBER)
3) Use the usual command STRDBG.
Important note: Do not forget to put the option DBGVIEW(*ALL) when
creating the program and/or the module, if you want to be able to see the
error inside the source code while debugging.

4. How do you do debugs for ILE programs and Handle
Exceptions?

Create the program EMPRPT so that you can debug it using the source
debugger. The DBGVIEW parameter on either CRTBNDRPG or CRTRPGMOD
determines what type of debug data is created during compilation.

The parameter provides six options which allow you to select which view(s)
you want:

* *STMT — allows you to display variables and set breakpoints at statement
locations using a compiler listing. No source is displayed with this view.

* *SOURCE — creates a view identical to your input source.

Page 135 of 250

As400 Stuff

* *COPY — creates a source view and a view containing the source of any

 /COPY members.

* *LIST — creates a view similar to the compiler listing.

* *ALL — creates all of the above views.

* *NONE — no debug data is created.

The source for EMPRPT is shown in Figure 28 on page 54.

1. To create the object type:

CRTBNDRPG PGM (MYLIB/EMPRPT) DBGVIEW (*SOURCE) DFTACTGRP (*NO)

The program will be created in the library MYLIB with the same name as the
source member on which it is based, namely, EMPRPT. Note that by default,
it will run in the default named activation group, QILE. This program object
can be debugged using a source view.

2. To debug the program type:

STRDBG EMPRPT

Programming Concepts

1. General RPG IV Program Cycle

Figure shows the specific steps in the general flow of the RPG IV program
cycle. A program cycle begins with step 1 and continues through step 7,
then begins again with step 1.

The first and last time a program goes through the RPG IV cycle differ
somewhat from the normal cycle. Before the first record is read the first time
through the cycle, the program resolves any parameters passed to it, writes
the records conditioned by the 1P (first page) indicator, does file and data
initialization, and processes any heading or detail output operations having
no conditioning indicators or all negative conditioning indicators. For
example, heading lines printed before the first record is read might consist
of constant or page heading information or fields for reserved words, such as
PAGE and *DATE. In addition, the program bypasses total calculations and
total output steps on the first cycle.

Page 136 of 250

As400 Stuff

During the last time a program goes through the cycle, when no more
records are available, the LR (last record) indicator and L1 through L9
(control level) indicators are set on, and file and data area cleanup is done.

Figure 5. RPG IV Program Logic Cycle

 1 All heading and detail lines (H or D in position 17 of the output
specifications) are processed.

 2 The next input record is read and the record identifying and control level
indicators are set on.

 3 Total calculations are processed. They are conditioned by an L1 through
L9 or LR indicator, or an L0 entry.

 4 All total output lines are processed (Identified by T at position 17 of
output specifications).

 5 It is determined if the LR indicator is on. If it is on, the program is ended.

 6 The fields of the selected input records are moved from the record to a
processing area. Field indicators are set on.

 7 All detail calculations are processed (those not conditioned by control
level indicators in positions 7 and 8 of the calculation specifications) on the
data from the record read at the beginning of the cycle.

Page 137 of 250

As400 Stuff

2. What are Static bind and Dynamic binds?

Dynamic Bind:

Suppose pgm A is calling pgm B. In current scenario, pgm A will get
compiled irrespective of pgm B object (*pgm), is there or not. It will give an
error at runtime, but not at compile time since this is a dynamic bind.

Static bind:

Suppose pgm A is calling pgm B. In current scenario, pgm A will not get
compiled if pgm B object (*pgm) not there. It will give an error at compile
time since this is a static bind.

3. CRTBNDRPG & CRTRPGPGM

CRTBNDRPG: Here the module is been created internally (a temporary one)
and the *PGM is been created.

CRTRPGPGM: Here the module a permanent one is created and the *PGM is
been created.

4. Hidden Fields:

In the hidden fields, the fields that are been hidden have the previously
entered values below and on F5 the values previously entered will be
available on the field.

5. Last statement of any RPG pgm is LR?

Not necessary. We can write the codes after SETON LR also and it will
execute that too. The main difference is that the program will end after the
last line of coding you did and will clear all the access path and variables to
blanks or zeros.
But when you give RETURN then the program will not execute the below
coding part and will end as soon as the RETURN is encountered, but here it
will not clear the access path and the variables. If you run the program again
you will find the last value in the variable.

While writing a program Last statement of RPG program need not be LR. It is
the last executable statement. I.e. after all processing is done LR (Last
Record indicator) will be set on.

NOTE: In a program that does not contain a primary file; you can set the LR
indicator on as one method to end the program.

Page 138 of 250

As400 Stuff

Last statement is RETURN. Means Exit from program LR is second last
statement. Means move pointer to end of file.

Ex: CLOS BEGSR
 MOVE '1' *INLR
 RETURN
 ENDSR

LR is generally set on after all processing is done i.e. at the end of the
program but there is no hard and fast rule for that.

6. Is Constant can be define as a key field?

No, But you can give a constant Value in physical file field and you can
specify that field as a key field.
In PF

A XXXXX 20 Value ("MYNAME")
 yyyyy 6 0
 Kxxxxx

7. Which keyword is used both in subfile and subfile control
record format of a DSPF?

SETOFF 03 'Exit'
 SETOFF 12 'Cancel'

8. Define interactive jobs and batch jobs?

In Interactive jobs user interaction to called job. But in batch jobs user
interaction not required (actions taken by System).
Interactive job using "CALL" command (CALL PROGRAMNAME) to run
program and you can't use your pc until program ends. Batch job using
"SBTJOB" command (SBMJOB"CALL/PROGRAMNAME") to run program and
you can use your pc and the program will run in the batch (QBATCH) you can
see this use WRKACTJOB command.

9. WHAT IS THE DIFFERENCE BETWEEN 'COLHDG' AND 'ALIAS'?

Both (COLHDG & ALIAS) are used to identify fields. COLHDG & ALIAS is the
Description of fields. The difference is that in ALIAS we can access data
based on that ALIAS name, while COLHDG is not allowed. Suppose in PF field
name as DES78, give ALIAS as Description78, then user can access data
from using Description78.

Page 139 of 250

As400 Stuff

10.What's the difference between CONST and VALUE?

If you pass a parameter by value, you are free to change the variable
defined by the procedure interface (you might want to change blanks to
zeroes, double quotes, strip leading zeroes). For a CONST parameter you
would have to copy to a local variable first.

The point is that in both cases the caller is assured that his variable won't be
changed by the called procedure, but the called procedure can use VALUE
parameters as work variables, whereas CONST parameters are not allowed
to be used in any way except "read-only."

A technical difference is that a CONST parameter is passed by reference,
while a VALUE parameter is passed by value.

When a parameter is passed by reference, the called procedure receives a
pointer to the parameter. When a parameter is passed by value, the called
procedure receives the actual value. Since a call to a program always passes
parameters by reference (on the Iseries at least), VALUE is not allowed on
program prototypes (EXTPGM keyword), but CONST is allowed.

11.CL – EOF:

When the end of file is reached, message CPF0864 is sent to the procedure
or OPM program. The CL variables declared for the record format are not
changed by the processing of the RCVF command when this message is
sent. You should monitor for this message and perform the appropriate
action for end of file. If you attempt to run additional RCVF commands after
end of file has been reached, message CPF0864 is sent again.

12.Level Check Error:

All the files will have a value for Level Check after compilation if the
parameter Level check (*yes) is given. If the file is modified and compiled
again, it will get a new value for level check. If the parameter Level
Check(*yes) is given for the file and the program using that file is not
compiled after the file is modified and compiled, then the program will
encounter level check error at the time of execution.

13.Significance of Return and *INLR = *ON.

If *INLR = *ON is specified in a program, it instructs the compiler that all the
operations should be terminated (i.e., if file is opened implicitly it should be
closed, data movement to/from data area should happen etc) before exiting

Page 140 of 250

As400 Stuff

the program. Even if there are any executable statements following that
they will be executed once.

Now, *INLR = *ON, followed by RETURN will terminate the operations and
return to the caller. Any executable statements that follow these 2
statements will not be executed.

If RETURN is given separately, the program will get returned, but the
operations will not be terminated (i.e., if file is opened implicitly it will not be
closed, data movement to/from data area will not happen etc). Any
statements that follow RETURN will never get executed.

14.*Entry – significance of factor 1, factor 2 and result fields.

http://publib.boulder.ibm.com/infocenter/iadthelp/v7r0/index.jsp?
topic=/com.ibm.etools.iseries.langref.doc/evferlsh320.htm

15. EDTCDE & EDTWRD, OVERLAY, RSTDSP, Command Attention
key and Command Function Key and Validity check:

• EDTCDE & EDTWRD
EDTCDE & EDTWRD are key words used for formatting purpose.
EDTCDE cannot be applied to Character filed. And EDTCDE has some
Codes pre-defined for example, EDTCDE(Z) – for suppressing the
leading zero Y – for date field.

EDTWRD can be used to define user defined formatting for fields.

• OVERLAY
It allows a record format to be displayed on screen retaining the
previous displayed record formats.

• What key word is used when screen is re-displayed?
RSTDSP is a parameter to be specified at compile time for display file.

• Command Attention key and Command Function Key?
With the help of Command attention key we can pass only the
indicator status to program not the data from screen. While command
function key passes indicator status as well as a data from screen to
program.

• How to validate input values in Display file?
With the help of Validity check key words VALUE, RANGE, COMP

Page 141 of 250

http://publib.boulder.ibm.com/infocenter/iadthelp/v7r0/index.jsp?topic=/com.ibm.etools.iseries.langref.doc/evferlsh320.htm
http://publib.boulder.ibm.com/infocenter/iadthelp/v7r0/index.jsp?topic=/com.ibm.etools.iseries.langref.doc/evferlsh320.htm

As400 Stuff

1. What is the difference between CA and CF keys?

• CF transfers the changed data and CA transfers only the
indicator value.

1. What is PSDS?

The Program Status Data Structure is the way the RPG compiler informs the
program what is happening at runtime. This is explained in the RPG
reference under File and Program Exception/Errors. For V5R1 English, here is
the link:
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c092508380.htm#H
DRPROGXPE

Here is an example of RPG D specs to describe the PSDS provided by Simon
Coulter:

 D SDS
 D PROC_NAME *PROC * Procedure
name
 D PGM_STATUS *STATUS * Status code
 D PRV_STATUS 16 20S 0 * Previous
status
 D LINE_NUM 21 28 * Src list line nu
 D ROUTINE *ROUTINE * Routine name
 D PARMS *PARMS * Num passed
parms
 D EXCP_TYPE 40 42 * Exception type
 D EXCP_NUM 43 46 * Exception
number
 D PGM_LIB 81 90 * Program library
 D EXCP_DATA 91 170 * Exception data
 D EXCP_ID 171 174 * Exception Id
 D DATE 191 198 * Date (*DATE fmt)
 D YEAR 199 200S 0 * Year (*YEAR
fmt)
 D LAST_FILE 201 208 * Last file used
 D FILE_INFO 209 243 * File error info
 D JOB_NAME 244 253 * Job name
 D USER 254 263 * User name
 D JOB_NUM 264 269S 0 * Job number

Page 142 of 250

As400 Stuff

 D JOB_DATE 270 275S 0 * Date (UDATE
fmt)
 D RUN_DATE 276 281S 0 * Run date
(UDATE)
 D RUN_TIME 282 287S 0 * Run time
(UDATE)
 D CRT_DATE 288 293 * Create date
 D CRT_TIME 294 299 * Create time
 D CPL_LEVEL 300 303 * Compiler level
 D SRC_FILE 304 313 * Source file
 D SRC_LIB 314 323 * Source file lib
 D SRC_MBR 324 333 * Source file mbr
 D PROC_PGM 334 343 * Pgm Proc is in
 D PROC_MOD 344 353 * Mod Proc is in
 D CURR_USER 358 367 * Mod Proc is in

 * Status codes
 * Normal Codes
 * Code Condition
 * 00000 No exception/error occurred
 * 00001 Called program returned with the LR indicator on.
 * Exception/Error Codes
 * Code Condition
 * 00100 Value out of range for string operation
 * 00101 Negative square root
 * 00102 Divide by zero
 * 00103 an intermediate result is not large enough to contain the
result.
 * 00104 Float underflow. An intermediate value is too small to be
contained in the
 * Intermediate result field
 * 00112 Invalid Date, Time or Timestamp value.
 * 00113 Date overflow or underflow. (For example, when the result of
a Date calculation
 * results in a number greater than *HIVAL or less than *LOVAL.)
 * 00114 Date mapping errors, where a Date is mapped from a 4
character year to a 2
 * Character year and the date range are not 1940-2039.
 * 00120 Table or array out of sequence.
 * 00121 Array index not valid
 * 00122 OCCUR outside of range

Page 143 of 250

As400 Stuff

 * 00123 Reset attempted during initialization step of program
 * 00202 Called program or procedure failed; halt indicator (H1 through
H9) not on
 * 00211 Error calling program or procedure
 * 00222 Pointer or parameter error
 * 00231 Called program or procedure returned with halt indicator on
 * 00232 Halt indicator on in this program
 * 00233 Halt indicator on when RETURN operation run
 * 00299 RPG IV formatted dump failed
 * 00333 Error on DSPLY operation
 * 00401 Data area specified on IN/OUT not found
 * 00402 *PDA not valid for non-prestart job
 * 00411 Data area type or length does not match
 * 00412 Data area not locked for output
 * 00413 Error on IN/OUT operation
 * 00414 User not authorized to use data area
 * 00415 User not authorized to change data area
 * 00421 Error on UNLOCK operation
 * 00425 Length requested for storage allocation is out of range
 * 00426 Error encountered during storage management operation
 * 00431 Data area previously locked by another program
 * 00432 Data area locked by program in the same process
 * 00450 Character field not entirely enclosed by shift-out and shift-in
characters
 * 00501 Failure to retrieve sort sequence.
 * 00502 Failure to convert sort sequence.
 * 00802 Commitment control not active.
 * 00803 Rollback operation failed.
 * 00804 Error occurred on COMMIT operation
 * 00805 Error occurred on ROLBK operation
 * 00907 Decimal data error (digit or sign not valid)
 * 00970 the level number of the compiler used to generate the
program does not agree
 * With the level number of the RPG IV run-time subroutines
 * 09998 internal failure in ILE RPG/400 compiler or in run-time
subroutines
 * 09999 Program exception in system routine.

2. What is the file information data structure?

Page 144 of 250

As400 Stuff

The File information data structure is the way the RPG runtime environment
informs the program about the status of a file, seen from the operating
system perspective. Sometimes called a feedback data structure, it is
updated after every I/O operation (RPG IV) or after a block of records is
transferred (RPG/400).

Information can be found in the RPG reference under File and Program
Exception/Errors. For V5R1 English, here is the link:
http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c092508377.htm#H
DRFILEXPE

Do note that there are example D specs at the above link.

Simon Coulter posted one example of D specs to the RPG400-L list:

 * Standard RPG feedback area 1-80
 DINFDS ds
 D File *FILE * File name
 D OpenInd 9 9 * File open?
 D EOFInd 10 10 * File at eof?
 D FileStatus *STATUS * Status code
 D OpCode *OPCODE * Last opcode
 D Routinr *ROUTINE * RPG Routine
 D ListNum 30 37 * Listing line
 D SpclStat 38 42S 0 * SPECIAL status
 D RecordFmt *RECORD * Record name
 D MsgID 46 52 * Error MSGID

 D* the next 4 fields are available after POST
 D Screen_P *SIZE * Screen size
 D NLSIn_P *INP * NLS Input?
 D NLSOut_P *OUT * NLS Output?
 D NLSMode_P *MODE * NLS Mode?

 * Open feedback area 81-240
 * NOTE that getting data beyond column 80 is expensive
 * In terms of program opens...
 D ODP_TYPE 81 82 * ODP Type
 D FILE_NAME 83 92 * File name
 D LIBRARY 93 102 * Library name
 D SPOOL_FILE 103 112 * Spool file
name
 D SPOOL_LIB 113 122 * Spool file lib

Page 145 of 250

As400 Stuff

 D SPOOL_NUM 123 124I 0 * Spool file
num
 D RCD_LEN 125 126I 0 * Max record len
 D KEY_LEN 127 128I 0 * Max key len
 D MEMBER 129 138 * Member name
 D TYPE 147 148I 0 * File type
 D ROWS 152 153I 0 * Num PRT/DSP
rows
 D COLUMNS 154 155I 0 * Num PRT/DSP
cols
 D NUM_RCDS 156 159I 0 * Num of
records
 D ACC_TYPE 160 161 * Access type
 D DUP_KEY 162 162 * Duplicate key?
 D SRC_FILE 163 163 * Source file?
 D VOL_OFF 184 185I 0 * Vol label offs
 D BLK_RCDS 186 187I 0 * Max rcds in bl
 D OVERFLOW 188 189I 0 * Overflow line
 D BLK_INCR 190 191I 0 * Blk increment
 D FLAGS1 196 196 * Misc flags
 D REQUESTER 197 206 * Requester
name
 D OPEN_COUNT 207 208I 0 * Open count
 D BASED_MBRS 211 212I 0 * Num based
mbrs
 D FLAGS2 213 213 * Misc flags
 D OPEN_ID 214 215 * Open identifie
 D RCDFMT_LEN 216 217I 0 * Max rcd fmt
le
 D CCSID 218 219I 0 * Database CCSID
 D FLAGS3 220 220 * Misc flags
 D NUM_DEVS 227 228I 0 * Num devs
defin

 D* I/O feedback area 241-366
 D* NOTE that this area is shared with the POST feedback area below!
 D * 241-242 not used
 D WRITE_CNT 243 246I 0 * Write count
 D READ_CNT 247 250I 0 * Read count
 D WRTRD_CNT 251 254I 0 * Write/read
count

Page 146 of 250

As400 Stuff

 D OTHER_CNT 255 258I 0 * Other I/O
count
 D OPERATION 260 260 * Cuurent
operatio
 D IO_RCD_FMT 261 270 * Rcd format
name
 D DEV_CLASS 271 272 * Device class
 D IO_PGM_DEV 273 282 * Pgm device
name
 D IO_RCD_LEN 283 286I 0 * Rcd len of I/O

 D* POST area 241-nnn
 D* Display
 D PGM_DEV_P 241 250 * Program
device
 D DEV_DSC_P 251 260 * Dev
description
 D USER_ID_P 261 270 * User ID
 D DEV_CLASS_P 271 271 * Device class
 D DEV_TYPE_P 272 277 * Device type
 D REQ_DEV_P 278 278 * Requester?
 D ACQ_STAT_P 279 279 * Acquire
status
 D INV_STAT_P 280 280 * Invite status
 D DATA_AVAIL_P 281 281 * Data
available
 D NUM_ROWS_P 282 283I 0 * Number of
rows
 D NUM_COLS_P 284 285I 0 * Number of
cols
 D BLINK_P 286 286 * Allow blink?
 D LINE_STAT_P 287 287 * Online/offline?
 D DSP_LOC_P 288 288 * Display
location
 D DSP_TYPE_P 289 289 * Display type
 D KBD_TYPE_P 290 290 * Keyboard
type
 D CTL_INFO_P 342 342 * Controller info
 D COLOR_DSP_P 343 343 * Color
capable?
 D GRID_DSP_P 344 344 * Grid line dsp?

Page 147 of 250

As400 Stuff

 * The following fields apply to ISDN.
 D ISDN_LEN_P 385 386I 0 * Rmt number
len
 D ISDN_TYPE_P 387 388 * Rmt number
type
 D ISDN_PLAN_P 389 390 * Rmt number
plan
 D ISDN_NUM_P 391 430 * Rmt number
 D ISDN_SLEN_P 435 436I 0 * Rmt sub-
address
 D ISDN_STYPE_P 437 438 * Rmt sub-
address
 D ISDN_SNUM_P 439 478 * Rmt sub-
address
 D ISDN_CON_P 480 480 * Connection
 D ISDN_RLEN_P 481 482I 0 * Rmt address
len
 D ISDN_RNUM_P 483 514 * Rmt address
 D ISDN_ELEN_P 519 520 * Extension len
 D ISDN_ETYPE_P 521 521 * Extension
type
 D ISDN_ENUM_P 522 561 * Extension
num
 D ISDN_XTYPE_P 566 566 * X.25 call
type
 D* ICF
 D PGM_DEV_P 241 250 * Program
device
 D DEV_DSC_P 251 260 * Dev
description
 D USER_ID_P 261 270 * User ID
 D DEV_CLASS_P 271 271 * Device class
 D DEV_TYPE_P 272 272 * Device type
 D REQ_DEV_P 278 278 * Requester?
 D ACQ_STAT_P 279 279 * Acquire
status
 D INV_STAT_P 280 280 * Invite status
 D DATA_AVAIL_P 281 281 * Data
available
 D SES_STAT_P 291 291 * Session status
 D SYNC_LVL_P 292 292 * Synch level

Page 148 of 250

As400 Stuff

 D CONV_TYPE_P 293 293 * Conversation
typ
 D RMT_LOC_P 294 301 * Remote
location
 D LCL_LU_P 302 309 * Local LU name
 D LCL_NETID_P 310 317 * Local net ID
 D RMT_LU_P 318 325 * Remote LU
 D RMT_NETID_P 326 333 * Remote net
ID
 D APPC_MODE_P 334 341 * APPC Mode
 D LU6_STATE_P 345 345 * LU6 conv
state
 D LU6_COR_P 346 353 * LU6 conv
 * correlator
 * The following fields apply to ISDN.
 D ISDN_LEN 385 386I 0 * Rmt number
len
 D ISDN_TYPE 387 388 * Rmt number
type
 D ISDN_PLAN 389 390 * Rmt number
plan
 D ISDN_NUM 391 430 * Rmt number
 D ISDN_SLEN 435 436I 0 * sub-addr len
 D ISDN_STYPE 437 438 * sub-addr type
 D ISDN_SNUM 439 478 * Rmt sub-
address
 D ISDN_CON 480 480 * Connection
 D ISDN_RLEN 481 482I 0 * Rmt address
len
 D ISDN_RNUM 483 514 * Rmt address
 D ISDN_ELEN 519 520 * Extension len
 D ISDN_ETYPE 521 521 * Extension
type
 D ISDN_ENUM 522 561 * Extension
num
 D ISDN_XTYPE 566 566 * X.25 call type

 * The following information is available only when program was started
 * as result of a received program start request. (P_ stands for protected)
 D TRAN_PGM 567 630 * Trans pgm
name

Page 149 of 250

As400 Stuff

 D P_LUWIDLN 631 631 * LUWID fld len
 D P_LUNAMELN 632 632 * LU-NAME len
 D P_LUNAME 633 649 * LU-NAME
 D P_LUWIDIN 650 655 * LUWID
instance
 D P_LUWIDSEQ 656 657I 0 * LUWID seq
num

 * The following information is available only when a protected
conversation
 * is started on a remote system. (U_ stands for unprotected)
 D U_LUWIDLN 658 658 * LUWID fld len
 D U_LUNAMELN 659 659 * LU-NAME len
 D U_LUNAME 660 676 * LU-NAME
 D U_LUWIDIN 677 682 * LUWID
instance
 D U_LUWIDSEQ 683 684I 0 * LUWID seq
num

 D* Device independent area 367-nnn
 D* NOTE that this area is shared with the POST feedback area above!
 D* Printer
 D CUR_LINE 367 368I 0 * Current line
num
 D CUR_PAGE 369 372I 0 * Current page
cnt
 D PRT_MAJOR 401 402 * Major ret code
 D PRT_MINOR 403 404 * Minor ret code

 D* Disk
 D FDBK_SIZE 367 370I 0 * Size of DB
fdbk
 D JOIN_BITS 371 374I 0 * JFILE bits
 D LOCK_RCDS 377 378I 0 * Nbr locked
rcds
 D POS_BITS 385 385 * File pos bits
 D DLT_BITS 384 384 * Rcd deleted
bits
 D NUM_KEYS 387 388I 0 * Num keys
(bin)
 D KEY_LEN 393 394I 0 * Key length

Page 150 of 250

As400 Stuff

 D MBR_NUM 395 396I 0 * Member
number
 D DB_RRN 397 400I 0 * Relative-rcd-
num
 D KEY 401 2400 * Key value (max
 D* * size 2000)

 D* ICF
 D ICF_AID 369 369 * AID byte
 D ICF_LEN 372 375I 0 * Actual data len
 D ICF_MAJOR 401 402 * Major ret code
 D ICF_MINOR 403 404 * Minor ret code
 D SNA_SENSE 405 412 * SNA sense rc
 D SAFE_IND 413 413 * Safe indicator
 D RQSWRT 415 415 * Request write
 D RMT_FMT 416 425 * Remote rcd
fmt
 D ICF_MODE 430 437 * Mode name

 D* Display
 D DSP_FLAG1 367 368 * Display flags
 D DSP_AID 369 369 * AID byte
 D CURSOR 370 371 * Cursor location
 D DATA_LEN 372 375I 0 * Actual data
len
 D SF_RRN 376 377I 0 * Subfile rrn
 D MIN_RRN 378 379I 0 * Subfile min rrn
 D NUM_RCDS 380 381I 0 * Subfile num
rcds
 D ACT_CURS 382 383 * Active window
 D* * cursor location
 D DSP_MAJOR 401 402 * Major ret code
 D DSP_MINOR 403 404 * Minor ret
code

 * Status codes
 * Normal Codes
 * Code � Device � RC � Condition
 * 00000 � � � No exception/error.
 * 00002 � W � n/a � Function key used to end display.
 * 00011 � W,D,SQ � 11xx � End of file on a read (input).

Page 151 of 250

As400 Stuff

 * 00012 � W,D,SQ � n/a � No-record-found condition on a CHAIN,
SETLL, and SETGT
 * 00013 � W � n/a � Subfile is full on WRITE operation.

 * Exception/Error Codes
 * Code � Device � RC � Condition
 * 01011 � W,D,SQ � n/a � Undefined record type (input record
does not match rec
 * � � � indicator).
 * 01021 � W,D,SQ � n/a � Tried to write a record that already
exists (file bein
 * � � � key is duplicate, or attempted to write
duplicate rela
 * � � � subfile).
 * 01022 � D � n/a � Referential constraint error detected
on file member.
 * 01023 � D,SQ � n/a � Error in trigger program before file
operation perform
 * 01024 � D,SQ � n/a � Error in trigger program after file
operation performs
 * 01031 � W,D,SQ � n/a � Match field out of sequence.
 * 01041 � n/a � n/a � Array/table load sequence error.
 * 01042 � n/a � n/a � Array/table load sequence error.
Alternate collating s
 * 01051 � n/a � n/a � Excess entries in array/table file.
 * 01071 � W,D,SQ � n/a � Numeric sequence error.
 * 01121(4) � W � n/a � No indicator on the DDS keyword for
Print key.
 * 01122(4) � W � n/a � No indicator on the DDS keyword for
Roll Up key.
 * 01123(4) � W � n/a � No indicator on the DDS keyword for
Roll Down key.
 * 01124(4) � W � n/a � No indicator on the DDS keyword for
Clear key.
 * 01125(4) � W � n/a � No indicator on the DDS keyword for
Help key.
 * 01126(4) � W � n/a � No indicator on the DDS keyword for
Home key.
 * 01201 � W � 34xx � Record mismatch detected on input.
 * 01211 � all � n/a � I/O operation to a closed file.
 * 01215 � all � n/a � OPEN issued to a file already opened.

Page 152 of 250

As400 Stuff

 * 01216(3) � all � yes � Error on an implicit OPEN/CLOSE
operation.
 * 01217(3) � all � yes � Error on an explicit OPEN/CLOSE
operation.
 * 01218 � D,SQ � n/a � Record already locked.
 * 01221 � D,SQ � n/a � Update operation attempted without
a prior read.
 * 01222 � D,SQ � n/a � Record cannot be allocated due to
referential constraint
 * 01231 � SP � n/a � Error on SPECIAL file.
 * 01235 � P � n/a � Error in PRTCTL space or skip entries.
 * 01241 � D,SQ � n/a � Record number not found. (Record
number specified in
 * � � � present in file being processed.)
 * 01251 � W � 80xx 81xx � Permanent I/O error occurred.
 * 01255 � W � 82xx 83xx � Session or device error occurred.
Recovery may be pos
 * 01261 � W � n/a � Attempt to exceed maximum number
of acquired devices.
 * 01271 � W � n/a � Attempt to acquire unavailable device
 * 01281 � W � n/a � Operation to un acquired device.
 * 01282 � W � 0309 � Job ending with controlled option.
 * 01284 � W � n/a � Unable to acquire second device for
single device file
 * 01285 � W � 0800 � Attempt to acquire a device already
acquired.
 * 01286 � W � n/a � Attempt to open shared file with
SAVDS or IND options.
 * 01287 � W � n/a � Response indicators overlap IND
indicators.
 * 01299 � W,D,SQ � yes � Other I/O error detected.
 * 01331 � W � 0310 � Wait time exceeded for READ from
WORKSTN file.
 * --
 * Notes:
 * (3) Any errors that occur during an open or close operation
 * will result in a *STATUS value of 1216 or 1217
 * regardless of the major/minor return code value.
 * (4) See Figure 9 in topic 1.3.2.4 for special handling.
 * AID byte map
 D KeyF1 s 1 inz(x'31')

Page 153 of 250

As400 Stuff

 D KeyF2 s 1 inz(x'32')
 D KeyF3 s 1 inz(x'33')
 D KeyF4 s 1 inz(x'34')
 D KeyF5 s 1 inz(x'35')
 D KeyF6 s 1 inz(x'36')
 D KeyF7 s 1 inz(x'37')
 D KeyF8 s 1 inz(x'38')
 D KeyF9 s 1 inz(x'39')
 D KeyF10 s 1 inz(x'3A')
 D KeyF11 s 1 inz(x'3B')
 D KeyF12 s 1 inz(x'3C')
 D KeyF13 s 1 inz(x'B1')
 D KeyF14 s 1 inz(x'B2')
 D KeyF15 s 1 inz(x'B3')
 D KeyF16 s 1 inz(x'B4')
 D KeyF17 s 1 inz(x'B5')
 D KeyF18 s 1 inz(x'B6')
 D KeyF19 s 1 inz(x'B7')
 D KeyF20 s 1 inz(x'B8')
 D KeyF21 s 1 inz(x'B9')
 D KeyF22 s 1 inz(x'BA')
 D KeyF23 s 1 inz(x'BB')
 D KeyF24 s 1 inz(x'BC')
 D KeyFClr s 1 inz(x'BD')
 D KeyFEnt s 1 inz(x'F1')
 D KeyFHlp s 1 inz(x'F3')
 D KeyFRDn s 1 inz(x'F4')
 D KeyFRUp s 1 inz(x'F5')
 D KeyFPrt s 1 inz(x'F6')
 D KeyFBksp s 1 inz(x'F8')
 D KeyFAutoEnter s 1 inz(x'3F')

3. CL Parameter Basics

When a variable is declared within a CL program, the system assigns storage
for that variable within the program automatic storage area (PASA). If you
subsequently use the variable as a parameter within a CALL command, the
system does not pass the value of that variable to the called program, but
rather a pointer to the PASA of the calling program. This is known as
parameter passing by reference.

Page 154 of 250

As400 Stuff

For this reason, it is very important that both programs declare the
parameter to be of the same type and size. To illustrate, let's look at the
following example:

PgmA: Pgm

 DCL &Var1 *CHAR 2 Inz('AB')
 DCL &Var2 *CHAR 2 Inz('YZ')

 Call PgmB Parm(&Var1 &Var2)

EndPgm

PgmB: Pgm Parm(&i_Var1 &i_Var2)

 DCL &i_Var1 *CHAR 4
 DCL &i_Var2 *CHAR 2

EndPgm

Hopefully, you've noticed that the first parameter is declared to be larger in
PgmB than it was in PgmA. Although you might expect &i_Var1 to contain
'AB ' after the call, the following is what the input parameters in PgmB
actually contain:

&i_Var1 = 'ABYZ'
&i_Var2 = 'YZ'

&i_Var1 shows the contents of the first parameter, and the second, because
the second parameter is immediately adjacent to the first within the storage
area. If the second parameter was not contiguous to the first, then the last
two bytes of &i_Var1 would show whatever happened to be in the storage
area at that time.

You can think of &i_Var1 as a 4-byte "window" into the storage area of the
calling program. It's passed a pointer that tells it where the view begins, and
it accesses anything in storage from that point up to the parameter's
declared length.

Looking at Literals

There are several ways that a program can be called, other than from
another program. Examples include the command line, SBMJOB, job

Page 155 of 250

As400 Stuff

scheduler etc. In the case of an interactive call from the command line, you
specify the parameters as literals, ie:

Call PgmB Parm('AB' 'YZ')

Consider that when we do this, there is no PASA. We'll look at the
implications of that in a minute, but for now; just make a note of it.
Submitting a job from the command line isn't any different. If you're
submitting a CALL, then you'll be specifying any associated parameters as
literals. However, things can get a bit deceiving when you submit a job from
within a program, as the following example illustrates:

PgmC: Pgm

 DCL &Var1 *CHAR 2 Inz('AB')
 DCL &Var2 *CHAR 2 Inz('YZ')

 SbmJob Cmd(Call PgmB Parm(&Var1&Var2))

EndPgm

Clearly, we're not passing literals here. Or are we?

Let's think about how things would work if we passed variables:

• PgmC submits a call to PgmB, passing two variables as parameters.

• PgmC immediately ends as a result of the EndPgm statement.

• PgmB begins running in batch and receives pointers to PgmC's PASA.

• PgmB crashes when it attempts to use the pointers.

We have invalid pointers because PgmC is no longer running. If you've ever
tried this personally, you know that it doesn't happen in practice. The reason
for that is that the system is converting those variables to literals before
issuing the CALL command. It’s very sneaky, but effective.

Now that we've seen some examples of where literals are used, and why, it's
time to talk about the PASA again. When we discussed the basics of CL
parameter passing, we learned that the called program expects to receive a
pointer to a storage area within the PASA for each input parameter. This
requirement hasn't changed. So now we have a situation where the CALL
command is passing literals, but the called program is still expecting
pointers.

Obviously, it's time for the system to perform some more magic behind the
scenes. In order to accommodate the requirements of the called program,

Page 156 of 250

As400 Stuff

the system creates a space in temporary storage for each literal being
passed, and moves the value of the literal into that storage space. Now it
can pass pointers to the called program, and everyone is happy.

Except you that is, because none of this changes the fact that you're getting
"garbage" in the input variables of your called program! Fair enough. I'm
getting to that now, but you needed the background in order to understand
the next part.

Sizing It All Up

Now that you know the system is creating variables behind the scene, you
might wonder how it knows what size those variables need to be. The
answer is that it doesn't. Instead, the designers have imposed some specific
rules about how literals are transformed to variables, and thereby passed as
parameters.

CL supports only three basic data types: character, decimal, and logical. For
the purposes of this discussion, you can consider the logical data type
equivalent to the character type, because it's treated in the same manner.

The simplest rule is the one that handles decimal literals. All decimal literals
will be converted to packed decimal format with a length of (15 5), where
the value is 15 digits long, of which 5 digits are decimal places. Therefore,
any program that you expect to call from the command line, or SBMJOB etc.,
needs to declare its numeric input parameters as *DEC(15 5).

Character literals are a little bit more complicated, but still fairly
straightforward. There are two rules to remember. The first is that any
character literal up to 32 characters in length will be converted to a 32 byte
variable. The value is left justified, and padded on the right with blanks.

So if you were to pass the following literal:
Call PgmB 'AB' the associated storage space for that literal would contain:
'ABxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx' (where "x" represents a blank space)

The second rule is that character literals longer than 32 bytes are converted
to a variable of the same length as the literal value itself, as in the following
example:

Call PgmB 'This is a long character literal that will exceed 32 bytes.' the
associated storage space for that literal would contain:

'This is a long character literal that will exceed 32 bytes.'

Finally, since the logical data type follows the same rules as the character
type, and the only possible values for a logical data type are '0' or '1', we

Page 157 of 250

As400 Stuff

know that a logical literal will always be created as a 32 byte, left justified,
padded character variable.

Parameter Problems

In the beginning of this explanation, you learned that it was important for
the parameter declarations to match between a called program and its
caller. Then you discovered that the system sometimes has to take it upon
itself to declare the parameters of the caller on your behalf. If the two
declarations don't match, we have the potential for trouble.

In the case of a decimal value, the result is immediate and obvious; you get
a data decimal error. Character variables are more difficult to debug
because they don't generate any immediate errors. What actually happens
depends upon the length of the parameter in the called program. If the
length of the parameter in the called program is less than the length of the
parameter being passed, the extra characters are effectively truncated, as
follows:

Call SomePgm ('ABCDEFG') /* system creates 32 byte *CHAR*/

SomePgm: Pgm Parm(&i_Var1)

 DCL &i_Var1 *CHAR 4

EndPgm

What happens is that the system passes
'ABCDEFGxxxxxxxxxxxxxxxxxxxxxxxxx' ('x' is a blank), but because of the
declared length of &i_Var1, SomePgm only see's 'ABCD'. For most of us, this
is the behavior that we would expect.

Things get nasty when the declared length of the variable is longer than
what is being passed in. Using the same example as we've just seen above:

SomePgm: Pgm Parm(&i_Var1)

 DCL &i_Var1 *CHAR 34

EndPgm

In this case, the system will still allocate 32 bytes of storage and assign
'ABCDEFGxxxxxxxxxxxxxxxxxxxxxxxxx' to it, but because &i_Var1 is now

Page 158 of 250

As400 Stuff

declared to be 34 bytes long, SomePgm will see more storage than it was
intended to. It will see the 32 bytes that were allocated for it, plus two
additional bytes. It's those two additional bytes that can cause the infamous
"unpredictable results" which IBM's documentation often refers to.

If the extra bytes contain blanks, chances are that you won't notice a
problem, but if they contain something else, your input parameter will
contain "garbage".

As you can see, when dealing with literals, the magic number for character
parameters is 32. If the called program declares the parameter to be less
than or equal to 32, you'll never see "garbage" in the parameter. Once you
cross that 32 byte threshhold, you need to take extra care to ensure that the
size of the literal being passed is equal to the declared size of the input
parameter.

Things to Remember

• Always match the type/size of parameters on your pgm to pgm calls.

• Remember that the system converts literals to variables in the
background.

• Remember that decimal literals are always converted to *DEC(15 5)
and that char literals less than or equal to 32 bytes are converted to
*CHAR(32) and that char literals greater than 32 bytes are converted
to variables of equivalent size.

And last, but not least: the called program "sees" as much storage as it
declares for an input parameter, regardless of whether or not the caller
actually allocated that much storage for it.

Here is an example of using a command with numeric parameters:
http://faq.midrange.com/data/cache/197.html

How to easily create a CMD object to start your CL program and avoid these
errors:
http://faq.midrange.com/data/cache/576.html

1. Calling program TSTCALL code:

D Result S 5A Inz('A')
D Factor1 S 5A Inz('B')
D Factor2 S 5A Inz('C')

Page 159 of 250

http://faq.midrange.com/data/cache/576.html
http://faq.midrange.com/data/cache/197.html

As400 Stuff

D Var1 S 5A Inz('X')

C Call 'TSTENTRY'
C Factor1 Parm Factor2 Result

C Eval Result = 'TEST'
C Result Dsply

C Eval *Inlr = *on

Called program (TSTENTRY) code:
D Res S 5A
D Fact1 S 5A
D Fact2 S 5A

C *Entry Plist
C Fact1 Parm Fact2 Res
C Eval *Inlr = *on

Description of the values in Factor 1, Factor 2 and Result:
While calling TSTENTRY
Factor1 = B
Factor2 = C
Result = A

Soon after entering TSTENTRY - Factor 2 gets moved to Result. Factor 1 and
Factor 2 gets cleared
Factor1 = ' '
Factor2 = ' '
Result = C

Before leaving TSTENTRY - Result is moved to Factor 1. Now Result is not
cleared after value is moved.
Factor1 = C
Factor2 = ' '
Result = C

After executing *Inlr = *on of the called program TSTENTRY
Factor1 = C
Factor2 = ' '
Result = ' '

Page 160 of 250

As400 Stuff

After returning to the calling program TSTCALL - Factor 1 gets moved to
Factor 2. Factor 1 gets cleared.
Factor1 = ' '
Factor2 = C
Result = ' '

2. Display Program References (DSPPGMREF)
The Display Program References (DSPPGMREF) command provides a list of
the system objects referred to by the specified programs. The following list
shows the system objects provided for the respective program types:

CL
*FILE, *PGM, and *DTAARA

CLE
*SRVPGM

CLLE
*FILE, *PGM, *DTAARA, and *SRVPGM

RPG
*FILE, *DTAARA, and *PGM

RPGLE
*FILE, *PGM, *DTAARA, and *SRVPGM

This information can be displayed, printed, or placed in a database output
file.
If the information is shown or printed, a list (by library) of the specified user-
authorized programs, along with the objects referenced by each program, is
created. For files, information about how each file is used (input, output,
update, unspecified, or any combination of these four) is also shown or
printed.

If the information is written to a database file, the database file will have a
record format named QWHDRPPR. The fields in record format QWHDRPPR
are the same as the fields in the IBM-supplied format QWHDRPPR in file
QADSPPGM in the library QSYS. The following information is contained in the
database file:

• The name of the program and its text description
• The name of the library containing the program
• The number of objects referenced by the program

Page 161 of 250

As400 Stuff

• The qualified name of the system object
• The information retrieval dates
• The object type of the referenced object

For files, the record contains the following additional fields:
• The name of the file in the program (possibly different from the system

object name if an override was in effect when the program was
created)

• The program use of the file (1=input, 2=output, 4=update,
8=unspecified, or a number representing a combination of any of
these four; for example, a code of 11 is a combination of 1, 2, and 8,
which is input, output, and unspecified)

• The number of record formats referenced, if any
• The name of the record format used by the file and its record format

level identifier
• The number of fields referenced for each format

Note: This command lists which objects are referenced when the object is
created or updated using UPDPGM or UPDSRVPGM. The referenced object
names and libraries listed may be different than the actual names of the
objects, since this information is stored when the program is created. Entries
can be added as the ILE program or service program is updated using
UPDPGM or UPDSRVPGM, but entries are never removed. If the object has
been moved since the program was created, or an override was in effect
during creation, the names listed may differ from the actual names.

Restrictions:
1. The user must have object operational authority for the program.
2. Also, of the libraries specified by the library qualifier, only the libraries

for which the user has read authority are searched for the programs.

Examples:
DSPPGMREF PGM(LIBRARY1/*ALL) OUTPUT(*OUTFILE)
 OUTFILE(LIB2/FILE2)
This command creates a list of all authorized programs found in LIBRARY1,
and of the files and other system objects that the programs reference. It
stores the list in a database file named FILE2 in LIB2.

DSPPGMREF PGM(LIBRARY1/BILLING) OUTPUT(*PRINT)
This command creates a list of system objects that are referenced by the
BILLING program in LIBRARY1. The output is spooled for printing.

Page 162 of 250

As400 Stuff

1. Difference between *Omit and *no pass:

Omitting Parameters:
When calling a program or procedure, you may sometimes want to leave out
a parameter. It may be that it is not relevant to the called procedure.

If you need to omit a parameter on a call, you have two choices:
• Specify OPTIONS(*OMIT) and pass *OMIT
• Specify OPTIONS (*NOPASS) and do not pass the parameter.

The primary difference between the two methods has to do with how you
check to see if a parameter has been omitted. In either case, an omitted
parameter cannot be referenced by the called procedure; if it is,
unpredictable results will occur. So if the called procedure is designed to
handle different numbers of parameters, you will have to check for the
number of parameters passed. If *OMIT is passed, it will 'count' as a
parameter.

Passing *OMIT
You can pass *OMIT for a prototyped parameter if the called procedure is
aware that *OMIT might be passed. In other words, you can pass *OMIT if the
keyword OPTIONS (*OMIT) is specified on the corresponding parameter
definition in the prototype. When *OMIT is specified, the compiler will
generate the necessary code to indicate to the called procedure that the
parameter has been omitted.

Note:
*OMIT can only be specified for parameters passed by reference.
To determine if *OMIT has been passed to an ILE RPG procedure, use the
%ADDR built-in function to check the address of the parameter in question.
If the address is *NULL, then *OMIT has been passed. You can also use the
CEETSTA (Check for Omitted Argument) bind able API.
Ex:
 *--
 * CEETSTA (Test for omitted argument) -- ILE CEE API
 * 1. Presence flag Output Binary(4)
 * 2. Argument number Input Binary(4)
 *--
 D CEETSTA PR EXTPROC('CEETSTA')
 D Present 10I 0
 D ArgNum 10I 0 CONST

Page 163 of 250

As400 Stuff

 D Feedback 12A OPTIONS(*OMIT)
 ...
 D HaveParm S 10I 0
 ...
 C CALLP CEETSTA(HaveParm : 3 : *OMIT)
 C IF HaveParm = 1
 * do something with third parameter
 C ENDIF

Leaving Out Parameters
The other way to omit a parameter is to simply leave it out on the call. This
must be expected by the called procedure, which means that it must be
indicated on the prototype. To indicate that a prototyped parameter does
not have to be passed on a call, specify the keyword OPTIONS (*NOPASS) on
the corresponding parameter definition. Note that all parameters following
the first *NOPASS one must also be specified with OPTIONS (*NOPASS).

You can specify both *NOPASS and *OMIT for the same parameter, in either
order, that is, OPTIONS (*NOPASS:*OMIT) or OPTIONS (*OMIT:*NOPASS).

As an example of OPTIONS (*NOPASS), consider the system API QCMDEXC
(Execute Command) which has an optional third parameter.
 *---
 * This prototype for QCMDEXC defines three parameters:
 * 1- a character field that may be shorter in length
 * Than expected
 * 2- Any numeric field
 * 3- An optional character field
 *---
 D qcmdexc PR EXTPGM('QCMDEXC')
 D cmd 3000A OPTIONS(*VARSIZE) CONST
 D cmdlen 15P 5 CONST
 D 3A CONST OPTIONS(*NOPASS)

1. What do we mean by externalizing?

By externalizing we mean that all READ, CHAIN, and other database
operations are located in separate routines and programs that require I/O
make requests to these routines to perform the operation on their behalf.

Page 164 of 250

As400 Stuff

2. What will FOR opcode will do?
SKANDASAMO/DOLOOP

FOR

 *************** Beginning of data *****************************

0001.00 di s 5p 0 inz(1)

0002.00 dn s 5p 0 inz(10)

0003.00 c for i=1 to n

0004.00 c i dsply

0005.00 c endfor

0006.00 c for i=n downto 1

0007.00 c i dsply

0008.00 c endfor

0008.01*for(I=5;I<40;i=i+10)

0009.00 c for i=5 by n to 40

0010.00 c i dsply

0011.00 c endfor

0012.00 c for i=5 to 40 by n

0013.00 c i dsply

0014.00 c endfor

0015.00 c seton lr

 ****************** End of data *****************************

OUTPUT

DSPLY 1 DSPLY 10

DSPLY 2 DSPLY 9

DSPLY 3 DSPLY 8

DSPLY 4 DSPLY 7

DSPLY 5 DSPLY 6

Page 165 of 250

As400 Stuff

DSPLY 6 DSPLY 5

DSPLY 7 DSPLY 4

DSPLY 8 DSPLY 3

DSPLY 9 DSPLY 2

DSPLY 10 DSPLY 1

DSPLY 5 DSPLY 5

DSPLY 15 DSPLY 15

DSPLY 25 DSPLY 25

DSPLY 35 DSPLY 35

3. What are the various stages for a job after it is submitted?
Job queue, Active job, and OUTQ are the three stages after the job has been

submitted.

4. What is an activation group?
Activation group is the boundary set for similar programs. Activation group is also a

storage space in memory.

✔ CLP has a OVRDBF command and calls a RPGLE program
✔ RPGLE program performs a read operation and the pointer is now in the second

program and now call the program 3
✔ RPGLE program that also do a read operation which will read the second record
✔ Since the pointer is in the second position and then return to 2nd program in the

above situation when the control transfer from 3rd record since the 2 rd record is
already read in program 3. But we need to need the 2nd record according to the
logic but this is not possible in any OPM programs. But in RPGLE there is a
solution for this problem by giving a common activation group for 1st and 2nd

program and have a separate activation group for the 3rd program while creating
the program itself and this will avoid the entire problem we faced before.

✔ In some situation we want to share between 2 program then we can give the
activation group in *job level in which the changes in one program will be
affected in another program.

 Types of activation group levels:
✔ *New: In this case every time you call the program an new activation

group will be created which this case will not be used mostly.
✔ *caller: If we don’t know the type of the program that is calling then we

can specify *caller where the activation group will be the same of the
program that is calling.

✔ Named activation group: We can give our own named for different
activation group.

Page 166 of 250

As400 Stuff

1. What are the statements that are affected by activation
group?

✔ OVRDBF
✔ OPNDBF
✔ OPNQRYF
✔ STRCMTCTL
✔ DLTOVR

1. How to see source of copybooks include in a program while
compiling or debugging?

While compiling the program give *list instead of *source which will expand
all the copybooks.

2. Explain keyword in ILE?
 Overlay
 Rename
 Prefix
 Options
 Const

1. How you can schedule a job to run periodically?
We have to create a job scheduler for running a job periodically. Here we can make a

job to run once or periodically at a given date and time. We can create a job scheduler by
using ADDJOBSCDE command.

We can list all the job scheduler running by using the command WRKJOBSCDE
command and we can delete a job scheduler by using RMVJOBSCDE or we can reschedule
the job by using CHGJOBSCDE.

2. How you can import and export a data type between 2
programs?
If you are using an export statement when declaring a variable then the data type

can be imported in any modules that is bind either by value or by reference. So in this case
we can pass values in between modules instead of using PLIST and *ENTRY.

3. Navigation between two screens
SKANDASAMS/TABLES

 EX21

 *************** Beginning of data *****************************

0001.00 FEXDSPF CF E WORKSTN

0002.00 C Z-ADD 1 SCR1 2 0

0003.00 C *IN03 DOWEQ *OFF

Page 167 of 250

As400 Stuff

0004.00 C SCR1 DOWEQ 1

0005.00 C EXFMT DSPF1

0006.00 C 03 LEAVE

0007.00 C IF *IN08=*ON

0008.00 C Z-ADD 2 SCR1

0009.00 C LEAVE

0010.00 C ENDIF

0011.00 C ENDDO

0012.00 C SCR1 DOWEQ 2

0013.00 C EXFMT DSPF2

0014.00 C 03 LEAVE

0015.00 C IF *IN07=*ON

0016.00 C Z-ADD 1 SCR1

0017.00 C LEAVE

0018.00 C ENDIF

0019.00 C ENDDO

0020.00 C 03 LEAVE

0021.00 C ENDDO

0022.00 C SETON LR

 ****************** End of data *******************************

4. Define indicator & MOVEA?
It is a 1-bit flag where value will be either 0 or 1 AS/400 provider 99 indicators for the

business user.

➢ 1-24 ->assigned functions keys
➢ 25-99 ->our own purpose

1. Define ITER / LEAVE/DO/Dow?

ITER-> Transfer the control before do loop.

Page 168 of 250

As400 Stuff

LEAVE-> Transfer the control after do loop.

DOU Checks after entering the loop, it is performed at least once.

DOW  Checks before entering into the loop.

2. Explain Assume and Overlay?

Assume
Type Y (Yes) to select the ASSUME keyword. It causes the AS/400 system to

assume that this record appears on the display when the file is opened. Use this
keyword to receive data that a previous program has left on the display.

Overlay

Type Y (Yes) to allows the overlaying of fields on the record without erasing
the entire display. Note: If you type anything other than Y or blank, your entry will
be ignored. You must specify the OVERLAY keyword to select the other keywords on
this display, with the exception of PUTOVR.

3. Why externalize?

Why would you want to do this? Perhaps we can best answer that question
by posing one of our own. Suppose that during discussions with your users, it
becomes apparent to you that the business needs have changed. After
having studied the new requirements for a while, you realize that you need
to redesign the database to accommodate these changes.

Would you:

• Modify your database and then locate all relevant I/O operations and
modify them as required.

• Decide that doing the right thing is just too much work, and just "hack" the
database one more time.

Externalizing the I/O operations of databases provides one way of helping to
ensure that your applications can adapt quickly and (relatively) painlessly to
changing business needs. Instead of coding a READ, CHAIN, or whatever at
each point in the program where database access is required, you invoke a
routine to perform the I/O for you.

4. What is the disadvantage of using Validity Check keyword? How to
overcome these disadvantages?

If invalid values are entered,

Page 169 of 250

As400 Stuff

• The option filed is displayed in reverse image.
• System defined message is displayed which may not be user friendly.
• Keyboard is locked, we have to reset it.
• To overcome above disadvantage validations is done within program and

user friendly/defined message is displayed.

1. Chain:

Chain is a combination of SETLL and READE

2. Which of the following operations does NOT zero the field FLDA
defined as 4,0?

C MOVE *ZEROS FLDA
C Z-ADD *ZEROS FLDA
C Z-ADD 0 FLDA
C MOVE *ALL'0' FLDA
C SUB FLDA FLDA
C MOVE '0000' FLDA
C CLEAR FLDA
C MOVE *BLANKS FLDA

The last instruction does NOT zero the field FLDA.

3. How can you check for a records existence without causing and I/O
(CHAIN/READ)?
With the help of File Information Data Structure, we can check
existence of records in a physical file. The code is described below:
In File description continuation line (IPFK)

KINFDS RCDS

IRCDS DS
I *RECORD #RCDS
with the above code we can check the existence of records in a file without causing
I/O operation.

4. What is the difference between UDATE and the system date?
UDATE supports two-digit year. The format is *MDY (MMDDYY).
*DATE (system date) supports four digit year. The format is *MDYY (MMDDYYYY).

5. Describe the difference between the DOWxx and DOUxx operations?
DOWxx : If the condition becomes true, then only the group of instructions allowed
executing.
DOUxx : Irrespective of condition, it will execute at least one time.

Page 170 of 250

As400 Stuff

6. Define the purpose of the ITER operation?
If you specify the ITER, the groups of statements are allowed to execute repeatedly.

7. List the steps/commands necessary to accomplish the following:
a. Copy data from the file ORDHDR into file ORDHIST
b. The file ORDHIST may or may not exist
c. If the file ORDHDR does exist, it may or may not contain data
d. The file ORDHIST may or may not contain data, if the file does contain data the old
data should be erased

Commands: a. CPYF FILE(ORDHDR) TOFILE(ORDHIST)
b. CPYF FILE (ORDHDR) TOFILE (ORDHIST) CRTFILE (*YES)
c. CPYF FILE (ORDHDR) TOFILE (ORDHIST) *ADD
d. CPYF FILE (ORDHDR) TOFILE (ORDHIST) *REPLACE

8. What is the purpose of the following?

FORDHDR1 IF E K DISK
ORDHDRF KRENAMEORDHDRF1

In order to rename the record format of a data base file in a program, we can use the above
steps. Purpose of renaming is: If the record format name is similar in two files and if both are
used in a same program, the program will not compile. Hence we have to rename either of
the file.

9. What is the purpose of the following
C/COPY QRPGSRC,ORDERR

During the compilation the source code of ORDERR copy book is copied into the existing
program. Whereas /COPY is compiler directive statement.

10.What is the purpose of the following? A CSRLOC (F1ROW F1COL)

Using this record level keyword, you can specify cursor location on an output operation to
the record format you are defining. The program sends output after setting the cursor
location.

11. What is the difference between SFLCLR and SFLINZ?
SFLCLR: It clears the subfile.
SFLINZ: First it clears the subfile and initializing the numeric variables with zeros and
alphanumeric variables with characters.

12. Define the purpose/use for SFLRNA?
Using this, we can make specified subfile record format inactive.

13. How can you detect and handle a record lock situation?
If you try to read the locked record, we can get system defined message i. e. , the

Page 171 of 250

As400 Stuff

program will ended abnormally. With the help of File Information Data Structure we
can handle record lock situation. Generally it will happen, when the same file of type
" U" used in different programs.

14. How can you detect overflow for a print program that prints multiple lines per
cycle?
You specify the indicators OA through OG and OV in 33 - 34 columns in a printer file.
This indicator automatically set on whenever overflow occurs on a type of page.

15. How would you design the process for a nightly, high volume check producing
process that needs to select only records that are flagged to be processed?
With the help of OPNQRYF Clp command, we can select the records from the data
base file. The process involves following steps:

Steps: 1. OVRDBF with SHARE (*YES)
2. OPNQRYF
3. CALL the program
4. DLTOVR
5. CLOF

16.How would you join 3 separate fields, a first name, middle initial
and last name together as 1 field with proper spacing? You can
describe in either RPG and/or RPG ILE (Integrated Language
Environment)

MOVE 'Dr. ' FNAME 3
MOVE 'JOHN' MNAME 4
MOVE 'WATSON' LNAME 6
FNAME CAT MNAME: 1 VAR1 8
VAR1 CAT LNAME:1 VAR2 15
DSPLY VAR2
MOVE *ON *INLR

17. When PGMA calls PGMB for the first time PGMB executes the
*INZSR. PGMB uses the RETRN operation to return to PGMA. When
PGMA call PGMB the second time is the *INZSR executed?

If you specify RETRN in called program, the *INZSR will not execute again.

18.Show 2 ways to convert a date from YYMMDD to MMDDYY (MULT
operation not acceptable)

1) CVTDAT DATE() RTNVAR() FROMFMT() TOFMT()
Source code is required to convert from one date format to another date format.
The source code in CLP is given below:

Page 172 of 250

As400 Stuff

PGM
DCL VAR(&VAR1) LENGTH(6) TYPE(*CHAR) VALUE('YYMMDD')
DCL VAR(&RCVD) LENGTH(6) TYPE(*CHAR)
DCL VAR(&VAR2) LENGTH(4) TYPE(*CHAR)
DCL VAR(&VAR3) LENGTH(2) TYPE(*CHAR)
CHGVAR VAR(&VAR2) VALUE(%SST(&VAR1 3 4))
CHGVAR VAR(&VAR3) VALUE(%SST(&VAR1 1 2))
CHGVAR VAR(&RCVD) VALUE(&VAR2 *CAT &VAR3)
SNDMSG MSG(&RCVD) TOUSR(*USRPRF)
ENDPGM

19. Determine the value of the result field

a. Cost = $110. 00
b. Tax = 20%
c. MarkUp= 05%
d. Sale = 10%

C Eval TotalCost = ((Cost * MarkUp) * Tax)) - Sale
= 1. 0$

20. Define the purpose of Factor 1 the Operation Code and *IN15 in following code
HI LO EQ
C *YMD Test(D) yymmddDate 15

If the factor 1 value matches with factor2 value, the indicator specified in EQ comes
*ON.

21.Describe the function of SETLL operation in RPG language?

The SETLL operation positions a file at the next record with a key or relative record
number that is greater than or equal to key or relative record number specified in
factor1.

22.Describe the function of SETGT operation in RPG language?

The SETGT operation positions a file at the next record with a key or relative record
number that is greater than key or relative record number specified in factor 1.

23. What is the purpose of Level Check parameter in a Physical file?

Specifies whether the level identifiers of the record formats in the physical file are
checked when the file is opened by the program.

24. Define a Job Queue?
Job queues are queues of batch jobs waiting to be processed.

Page 173 of 250

As400 Stuff

25. Define an Output Queue?
Output queues are queues of jobs waiting to be printed.

26. What is the function of CPYSPLF command?
It copies the spooled file to the data base file.

27. What is the function of CPYF command?
To copy the data from the one file to another.

28. What is the function of CRTDUPOBJ command?
To create the replica from the original object.

29. Define Subsystem?
Subsystem is nothing but it provides specialized environment to complete the
execution of jobs.

30. What are different types of Substems?
QBATCH, QINTER, QSPL, QCMN, QCTL, QBASE.

31. Define a Batch Job?
* A user requests the job.
* The job is created (job name is assigned, job attributes are allocated)
* The job is placed on a job queue
* The sub system QBATCH takes the job from job queue and starts it.
* Output generated by the batch job is placed on an output queue.
* The spool sub system prints the output on the output queue.

32. Describe about Query/400?
Query/400 is a licensed program that uses a query to analyze and select the
information contained in the data base files and create a query report.
A query report can be:
* displayed on a workstation (screen)
* printed
* stored in another database file.

33. What is the CLP command to access a Query/400?
WRKQRY

34. Purpose of Overrides?
The basic purpose of Overrides is to temporarily change the attributes of a file. So
you don't have to create permanent files for every combination of attributes your
application might need. Overrides gives you the flexibility to use existing model files
and dynamically change their attributes.

35. Define Data Structure?
Data structures are specified in the Input specifications of an RPG/400 program to
define an area in storage and layouts of related sub fields.

Page 174 of 250

As400 Stuff

36. What is the purpose of Data structure?
* Divide a field in to sub fields
* Change the format of a field
* Group non-contiguous data in a contiguous format
* Define an area of storage in more than one format
* Define Multiple occurrences of data structures.

37. List and explain the different type of data structures?
* Data area data structure
when the data area is defined in an RPG/400 program as a data area data structure,
its data is implicitly retrieved for processing and written back at the end of the
program. In the data area data structure, letter "U" must be entered to define the
data structure as a data area data structure.

* File information data structure
a file information data structure provides exception/error information that may be
occurred when processing a file during program execution. This type of data
structure contains pre defined sub fields that identify
* The name of the file for which the error occurred
* The record processed when the error occurred
* The operation being processed when the error occurred
* The status code number
* The RPG/400 routine in which the error occurred.
Exception errors may be controlled by testing for an error code in the *STATUS field
which is included in a file information data structure. Specifically, keywords including
*FILE, *RECORD, *OPCODE, *STATUS, *ROUTINE provide the previously named
information.

 Program status data structure
Program status data structure however identity exception/errors that are generated
in the program by RPG/400 operations and not by a file. Note that any code greater
than 00099 is flagged as an exception/error. Four keywords - *STATUS, *ROUTINE,
*PROGRAM, *PARMS are supported by a program status data structure.

38. What is the purpose of DYNSLT keyword?
This is a file level keyword used in a logical file. If you specify this in a file level, the
system doesn't perform record selection until the program reads file. Then on the
Select/Omit criteria, it selects the records from the specified file.

39. What is the difference between access path and Dynamic select?
Dynamic select occurs whenever the program reads file. But access path occurs
before the file is read (but not necessarily). Because access path maintenance
performed on the file.

40. Why would you prefer OPNQRYF than logical file?
The main difference is: Logical file creates permanent object on the system.
OPNQRYF creates temporary access path.

Page 175 of 250

As400 Stuff

41. What is the difference between Packed decimal and Zoned decimal?
Packed decimal: One digit occupies 1 byte.
Zoned decimal: One digit occupies 2 bytes.

42. What is default data type (if you define decimals '0') in Physical file?
Packed decimal

43. What is default data type for the fields(sub fields) defined in data structures in
RPG?
Zoned decimal

44. When do you explicitly open files and close files in an RPG program?
If you specify the letter ' U ' at column 73-74, you need to be open and close files
explicitly in a RPG program.

45. What is Spool file, why is it required?
A file that holds output data to be processed, such as information waiting to be
printed.

46. What is Job, What are the attributes of a Job?
A Job is a basic unit of work on AS/400.
The attributes are:
Job Number Unique system generated sequential number
Job Name Any user defined name (Max 10 char)
User Name Who initiated the job.

47. What is Sub-System?
Sub-Systems are specific user defined partitions of the CPU where various jobs may
be executed. One subsystem can have more than one active job at a time.

48. What is a Device file?
A device file contains the description of how data is to be presented to a program
from a device or vice versa. Device file can be Printer, Disk, Tape and Remote
system.

49. How can a data area be locked after being updated?
Using OUT *LOCK

50. What are the types of object authorities?
*USE, *CHANGE, *ADD, *DLT, *READ, *UPD, *ALL, *EXCLUDE, *OBJEXIST, *OBJMGT,
*OBJOPR

51. What is the use of OVRPRTF?
Override with Printer file (OVRPRTF) command is used to override certain parameters
of the printer files used in the program or to replace the printer file.

Page 176 of 250

As400 Stuff

52. What is Subfile?
Subfile is group of records of same record format and can be read from or write to
the display in a single operation.

53. What are all the contents of subfile?
Subfile Record Format, Subfile Control Record Format, Relative Record Number,
Subfile Record Number, Associated Subfile Keywords.

54. What is SFLPAG and SFLSIZ?
SFLPAG: it is an attribute which specifies the number of records that can be
displayed in a screen.
SFLSIZ: it is an attribute which specifies the number of records can be stored in
subfile.

55. Can more than one subfile record be displayed on one line?
Yes, by using SFLLIN keyword.

56. How do you specify the number of records to roll in a subfile?
Use SFLROLVAL keyword in DDS along with number, which specifies the number of
records to scroll at a time.

57. How will you display a particular page in subfile?
Move a valid relative record number (RRN) in the field specified using SFLRCDNBR
keyword in DDS.

58. How to pick up the changed records every time in a subfile after the first change
made?
Seton SFLNXTCHG keyword indicator and update the subfile record.

59. What is the use of SFLEND keyword?
By specifying this keyword, the Bottom/More message could be displayed at end of
screen.

60. How to toggle between single line and Multi - line display of a particular record in a
subfile?
Using SFLDROP keyword.

61. Explain the difference between defining Subfile and Message-subfile?
Subfile record is defined by SFL keyword, where as Message subfile is defined by
SFLMSG keyword.

62. What are the different types of variables available in CL?
DEC, CHAR, LGL

63. How do you pass parameters in CL?
Using PARM keyword.

Page 177 of 250

As400 Stuff

64. What is difference between CAT, TCAT, BCAT?
CAT Concatenate two variables or constants into one continuous string.
BCAT Truncates all trailing blanks in the first character string, one blank is inserted,
then the two character strings
are concatenated.
TCAT Truncates all trailing blanks in the first character string, the two character
strings
are concatenated.

65. What are the different types of messages in CL?
Immediate message, Break message, Program message, User message

66. How to trap errors in CL?
By using Monitor Message Command (MONMSG)

67. What is the maximum length of a variable name in CL?
Maximum 11 characters (including '&')

68. What are the limitations of CL (compare to RPG) ?
You cannot use CL program to ADD or UPDATE records in database files.
Use Printer or ICF files.
Use Program described files.
Use the concept of subfile (to display more than one record), but a single output
message subfile is a special type of
subfile that is supported well in CL.
Use subroutines.
You cannot declare more than one object (file) in a CL program.

69. What is the use of Header Specification in RPG/400?
It identifies by H in column 6, provides information about generating and running
programs.

70. When will DUMP and DEBUG opcodes be ignored?
If blank is specified in position 15 of H specs.

71. Specify different indicators used in RPG?
Overflow indicators
Record Identifying Indicators
Field Indicators
Resulting Indicators
Control Level Indicators

72. What are Control level indicators?
L1 to L9 used to identify certain fields on control fields and then used to condition
which operations are to be processed at detail or total calculation or output time.

Page 178 of 250

As400 Stuff

73. What is the use of E specification in RPG?
Extension Specs describes all record address files, arrays and tables.

74. What is the use of L specs in RPG?
Line counter specification can be used to describe printer file to indicate the length
of the form and number of lines per page.

75. In which specification the report layout can be defined?
O Specification.

76. How many files can be defined in F specs? 50

77. How many printer files can be defined in F specs? 8

78. Give three main purposes of File specification?
To define files, to describe the files, to assign the files to specified devices.

79. How do you specify page overflow indicator for printer files in RPG?
Specify an indicator in position 33-34 of F specification.

80. What is a Primary File?
It is used in RPG Program Cycle to automatically read records in a cycle.

81. Can an indexed file be accessed in arrival sequence in RPG program? Yes.

82. What is a Program Described file in RPG?
The field name and length of the fields are defined within the RPG program.

83. What is externally described file?
All information about the fields is specified in DDS and the RPG program can use
them within the program.

84. Can you specify a display file to be used in the following modes Input, Output, or
Combined modes? Yes.

85. What is match field indicator?
Matching record indicator is seton when all the matching fields in the record of a
secondary file matches with all the matching fields of a record in a primary file.

86. What are all the compiler directive statements?
/TITLE, /SPACE, /EJECT, /COPY

87. During execution, an RPG/400 program automatically follows a sequence of
operations for each record that is processed. The built-in program cycle includes the
following logical steps.
1. reading input (READ)

Page 179 of 250

As400 Stuff

2. processing calculations (PROCESS)
3. writing output (WRITE)

88. What are the different Opcodes available in RPG for Database access?
READ, CHAIN, WRITE, UPDAT, DELET, SETLL, SETGT, READE, READP, REDPE, OPEN,
CLOSE, FORCE, NEXT, UNLCK.
309. How can database records be read without lock ?
Put 'N' in position 53 of C specs.

89. What does CHECK opcode do ?
The check operation verifies that each character in the base string (factor 2) is
among the character indicated in the comparator string(factor 1).

90. How do handle file exception/error
*INFDS ,*PSSR defining it in F spec

91. What is OPNQRYF, MONMSG commands
It is Dynamically creation of access path, and it can have resultant fields i.e. if the
expression is A = B + C then B and C are from the file while A is defined in OPNQRYF.
We can divert the output of command to an OUTFILE. Command associated with
OPNQRYF is CPYFRMQRYF to save the output permanently

It is a CL command to monitor and error/exception message so that in case of an
error a dump is avoided and the control is in program. It is also used to monitor user
message.

92.What are the uses of FACTOR1, FACTOR2 and RESULT field for the RPG
operation code PARM?

 It is add value of FACTOR1 to FACTOR2 or compare the value of FACTOR 2 with
FACTOR1.

93.How will you find a string using PDM?

 By using FNDSTRPDM.

94.How do you read changed records backward in subfile?

 NOT POSSIBLE.

95.What is the difference between normal UPDDTA to PF and updating
using DFU program?

Both are same only difference is DFU allows you to add or change selected fields

133. What is the syntax for PLIST?

*ENTRY PLIST PARM

134. Which are the String Manipulation Opcodes?

TESTN, SCAN, CHECK, CHECKR, SUBST & CAT

Page 180 of 250

As400 Stuff

Sub P r ocedures:

1. Why Sub procedures are used?

➢ Sub procedures can define their own local variables.
➢ Sub procedures can accept parameters.
➢ Sub procedures provide parameter checking
➢ Sub procedures can be used as a user defined function.
➢ You can call the sub procedure from outside the module, if it is

exported.
➢ Sub procedures provide multiple entry points within the same RPG

module.

1. Can you use a sub procedure in a sub procedure?

Yes

2. What are the specifications used in a sub procedure?

P, D, C only.

3. How many ways a sub procedure can pass parameters?

• By reference (default)

• By value (keyword VALUE on the parameter definition)

• By read-only reference (keyword CONST on the parameter definition)

4. How do you invoke a stored procedure?

To invoke a stored procedure we use the SQL CALL statement. This
statement contains the name of the stored procedure and any arguments
passed to it. Arguments may be constants, special registers, or host
variables. Here is an example how to call stored procedure and pass two
arguments:

/Exec Sql

CALL mylib/procname (:PARTNUM, :PARTDES)

/End-Exec

Easiest way to return a completion status to the SQL program issuing the
CALL statement is to code an extra INOUT type parameter and set it prior to

Page 181 of 250

As400 Stuff

returning from the procedure. Another, more complicated method of
returning a completion status is to send an escape message to the calling
program (operating system program QSQCALL) which invokes the
procedure.

5. Is there any cycle code generated for the sub procedure?

No. Not generated.

6. What are the Important frequently used commands in
ILERPG environment?

Commonly Used CL Commands

Action CL command Result

Using System Menus GO MAIN Display main
menu

GO INFO Display help menu

GO CMDRPG List commands for RPG

GO CMDCRT List commands for creating

GO CMDxxx List commands for 'xxx'

Calling CALL program-name runs a
program

Compiling CRTxxxMOD Creates xxx Module

CRTBNDxxx Creates Bound xxx Program

Binding CRTPGM Creates a program from ILE

Modules

CRTSRVPGM Creates a service program

UPDPGM Updates a bound program
object

Debugging STRDBG Starts ILE source debugger

Page 182 of 250

As400 Stuff

ENDDBG Ends ILE source debugger

Creating Files CRTPRTF Creates Print File

CRTPF Creates Physical File

CRTSRCPF Creates Source Physical File

CRTLF Creates Logical File

7. What are CODE/400 / Visual Age??

ADTS CS (for Windows Ñ) is a workstation product that includes two
server access programs:

* Cooperative Development Environment/400 (CODE/400)

* Visual Age for RPGÑ

CODE/400 contains features to help edit, compile, and debug: RPG, ILE
RPG,

COBOL, ILE COBOL, Control Language (CL), ILE C, and ILE CL host source
programs; design display, printer, and database host files; and manage
the components that make up your application. This enhances program
development and moves the program development workload off the host.
The application, when built, runs on an AS/400. For RPG and ILE RPG
application development and maintenance, CODE/400 provides:

 * Language sensitive editing— includes token highlighting, format lines,
a full suite of prompts, and online help.

 * Incremental syntax checking— provides immediate error feedback as
each line of source is entered

 * Program verification— performs, at the workstation, the full range of
syntax and semantic checking that the compiler does, without generating
object code

 * Program conversion— performs, at the workstation, an OPM to ILE RPG
conversion

 * A windowed environment for submitting host compiles and binds

 * Source-level debugging

Page 183 of 250

As400 Stuff

 * A DDS design utility—allows you to easily change screens, reports, and
database files

 * Access to Application Dictionary Services.

Visual Age for RPG offers a visual development environment on the
workstation platform for RPG application developers to develop, maintain,
and document client/server applications. Applications can be edited,
compiled, and debugged on your workstation. The applications, when
built, are started on a workstation and can access AS/400 host data and
other AS/400 objects. Its integrated components allow application
developers to preserve their current skills and easily develop AS/400 RPG
applications with graphical user interfaces.

8. What are Main Procedure and a sub procedure?

An ILE RPG module consists of a main procedure and zero or more sub
procedures. (If there are sub procedures, the main procedure is optional.)
A main procedure is a procedure that can be specified as the program
entry procedure (and so receive control when an ILE program is first
called). The main procedure is defined in the main source section,
which is the set of H, F, D, I, C, and O specifications that begin a module.
In V3R1, all ILE RPG modules had a main procedure and no other
procedures.

A sub procedure is a procedure that is specified after the main source
section. A sub procedure differs from a main procedure primarily in that:

* Names that are defined within sub procedure are not accessible outside
the sub procedure.

* No cycle code is generated for the sub procedure.

* The call interface must be prototyped.

* Calls to sub procedures must be bound procedure calls.

* Only P, D, and C specifications can be used.

Sub procedures can provide independence from other procedures
because the data items are local. Local data items are normally stored in
automatic storage, which means that the value of a local variable is not
preserved between calls to the procedure.

Page 184 of 250

As400 Stuff

Sub procedures offer another feature. You can pass parameters to a sub
procedure by value, and you can call a sub procedure in an expression to
return a value.

Sub Files

1. Explain about sub files in AS/400?
✔ A subfile is a group of records READ from or WRITTEN to a display device

file in one single operation.
✔ It is a display file facility
✔ It is a group of records that can be stored in the main memory.
✔ The program can store a group of records in the subfile one by one in a

sequence.
✔ LODING SUBFILES:

➢ Load all (Size >Page)
➢ Load on demand (Size >Page)
➢ Load on demand (Size =Page)

✔ Load all (Size >Page)
➢ All the records from the database file will be loaded in to the subfile

in one shot.
➢ The subfile size should be greater than the page size at least by

one. (SFLSIZ =5, SFLPAG=4). The subfile size will dynamically grow
when the subfile size mentioned is less than the number of records
in the database file.

➢ PAGEUP and PAGEDOWN are taken care of by the system.
➢ The total subfile size 9999 records.

✔ Load on demand (Size > Page)
➢ The number of records as mentioned in SFLPAG will be loaded
initially.
➢ Then the remaining records can be loaded by pressing
PAGEDOWN, which is taken care of by the programmer.

➢ Same time PAGEUP is taken care of by the system.
➢ The subfile size should be greater than the page size at least by

one. (SFLSIZ =5, SFLPAG=4). The subfile size will dynamically grow
when the subfile size mentioned is less than the number of records
in the database file.

➢ All the records loaded will exist in the subfile.
➢ The total subfile size 9999 records.

Page 185 of 250

As400 Stuff

✔ Load on demand (Size = Page)
➢ The number of records that will be loaded into the subfile must
always be equal to the value mentioned in for SFLSIZ and SFLPAG.
➢ Every time the subfile should be cleared before paging up or paging
down.
➢ PAGEUP and PAGEDOWN are taken care of the programmer.
➢ The number of records that can be in the subfile at any instance
will be equal to SFLSIZ and SFLPAG values.

Subfile points:

Record formats:

One display -1024 records formats

One display files –512 subfiles

Record formats are

1. Subfile record format (SFL)

2. Subfile control record format (SFLCTL)

Subfile record format (SFL)

This record format will have the multiple record definitions

-Defining fields.

-Defining database fields.

Subfile Control record format (SFLCTL)

This record format will control the subfile record format.

-Defining texts

-Defining control fields.

Subfile Size (SFLSIZ)

This keyword can be used to specify the maximum number of records
that can be in the subfile (buffer)

Default ->2

Maximum ->9999

Subfile Page (SFLPAG)

This keyword can be used to specify the maximum number of records
that can be in one subfile page. That is the maximum number of records that
the system will display in the screen at a time.

-Default ->1

Page 186 of 250

As400 Stuff

-Maximum-> depends upon the display record size.

If the subfile size is at least one greater than the subfile page then the
subfile size will grow dynamically up to 9999.

General keywords

SFLDSP -> subfile display

SFLDSPCTL -> subfile display control

SFLCLR -> subfile clear

SFLEND -> subfile end

Define General Keywords

 Subfile control record : SENWLT1

 Type choices, press Enter. Keyword

 Related subfile record SFLCTL SENWND1 Name

 Subfile cursor relative record . . . SFLCSRRRN Name

 Subfile mode SFLMODE Name

 Y=Yes Indicators/+

 Display subfile records SFLDSP Y 25

 Display control record SFLDSPCTL Y 26

 Initialize subfile fields SFLINZ

 Delete subfile area SFLDLT

 Clear subfile records SFLCLR 28

 Indicate more records SFLEND 30

 SFLEND parameter *MORE Y

 SFLEND parameter *SCRBAR *MORE...

 Record not active SFLRNA

 More...

 F3=Exit F12=Cancel

Subfile Display (SFLDSP)

Page 187 of 250

As400 Stuff

This keyword is used to insert the system that the subfile records
format has to be displayed. The subfile record format without any record in it
cannot be displayed.

Subfile Display control (SFLDSPCTL)

This keyword is used to instruct the system that the subfile control
record format has to be displayed.

0009.00 C N30 SETON 2526

Subfile Clear (SFLCLR)

This keyword is used to clear the records in the subfile records format.

An indicator can control this keyword.

0005.00 C SETON 28

0006.00 C WRITE SENWLT1

0007.00 C SETOFF 28

Subfile End (SFLEND)

✔ This keyword is used to get the display of ‘+’ sign or a text ‘more’ or
‘bottom’ in the bottom of the subfile.

✔ ‘+ or ‘more’ indicates the existence of more records in the subfile which
can be displayed by pressing PAGEDOWN key.

✔ ‘Bottom’ indicates the end of the subfile.
✔ Instead of Enter Key - Help Type a CF or CA key number to specify that

the operator is to use the Enter key as a Roll Up key. The specified CF or
CA key acts as the Enter key.

Mandatory keywords for subfile

✔ SFL
✔ SFLCTL
✔ SFLSIZ
✔ SFLPAG
✔ SFLDSP

RRN (Relative record number) (control record level keyword)

✔ RRN is the numeric value (1 to 9999) associated with each subfile
record for accessing

✔ Each record should have a unique RRN value
✔ This value has to be giving by the program.
✔ This has to be associated with the subfile record format in the F spec

continuation line.

Page 188 of 250

As400 Stuff

✔ This has to be declared in the program as numeric variable of
maximum length 4 and decimal position 0.
F spec format in continuation line with SFILE option

0002.00 FSENDESFILECF E WORKSTN

0003.00 F SFILE (SFL01:RRN1)

Where RRN1 -> RRN variable name

SFL01-> subfile record format name.

RPGLE Opcodes

EXFMT

If SFLDSP and SFLDSPCTL indicators are on, this opcode will
send the two subfile record formats to the display device and waits for
the user’s response.

WRITE – (SFL)

➢ This opcode is used to add a record to the subfile record
format

➢ RRN value should be set with a non-existing value before
adding the record in the subfile record format.

WRITE (SFLCTL)

This keyword is used for clearing & display the subfile

SFLDROP (subfile drop)

This control record level keyword is used to assign a CA (command
attention) or CF (command function) key. The program first displays the
subfile in truncated form; subfile records are truncated to fit on one display
line. When the user presses the specified key, the program displays the
records in the folded form.

Or

 Subfile Initially Truncated - Help Type a command function (CF) or
command attention (CA) key number to assign a CF or CA key to specify if a
subfile control record requiring more than one display line should be
truncated to one line, or should be folded to display on two lines. When this
keyword is specified, the subfile is first displayed in truncated form. The
operator presses the specified CF or CA key to switch from truncated form to
folded form or from folded form to truncated form.

Page 189 of 250

As400 Stuff

SFLFOLD (subfile fold)

This control record level keyword is used to assign a CA (command
attention) or CF (command function) key. The program first displays the
subfile in folded form. When the user presses the specified key, the program
displays the records again in the truncated form.

Or

Subfile Initially Folded - Help Type a command function (CF) or
command attention (CA) key number to assign a CF or CA key to specify if a
subfile control record requiring more than one display line should be
truncated to one line, or should be folded to display on two lines. When this
keyword is specified, the subfile is first displayed in folded form. The
operator presses the specified CF or CA key to switch from folded form to
truncated form or from truncated form to folded form.

SFLINZ (subfile initialize)

This control record level keyword is used to specify that the program is
to initialize all records in the subfile on the output operation (read & updates)
to the subfile control record format.

The fields in each subfile record are initialized to

CHAR->BLANKS

NUME->ZEROS

FLOAT->NULLS

SFLNXTCHG (subfile next change)

This record level keyword is used on the subfile control record format
to force the user to correct program-detected keying error in the subfile
records that have been read by the program. It does this by causing the
record to be changed so that a get-next-changed operation must read the
record.

Or

Return Record - Help Type Y (Yes) to instruct the system to return this
subfile record to your program on a subsequent Get-Next-Changed input
operation to the subfile. This record is returned whether or not the operator
changes it. Note: You must type Y. If you do not, the entry will not be
used. `You can specify condition indicators for the SFLNXTCHG keyword.

Page 190 of 250

As400 Stuff

SFLROLVAL (subfile roll value)

This field-level keyword is used to specify that the user can key a
value into this field to tell the program how many records to PAGEUP or
PAGEDOWN when the appropriate paging key is pressed.

SFLRCDNBR (subfile record number)

This field level keyword on the subfile control record format is used to
specify that the page of the subfile to be displayed is the page containing the
record whose relative record is in this field. If you do not specify this
keyword, the program displays the first page of the subfile by default

Example for load all

SKANDASAMO/SUBFILE

 NEWEMP

 *************** Beginning of data *******************

0001.00 UNIQUE

0002.00 R EMPNEW

0003.00 EMPNOM 6P 0 TEXT('EMPLOYEE NUMBER')

0004.00 EMPNA 15A TEXT('EMPLOYEE NAME')

0005.00 SEX3 1A TEXT('EMPLOYEE SEX')

0006.00 AGE3 3P 0 TEXT('EMPLOYEE AGE')

0007.00 ADDRESS5 15A TEXT('ADDRESS')

0008.00 CITY5 10A TEXT('CITY')

0009.00 K EMPNOM

 ****************** End of data *********************************

DATA FILE

 Display Report

 EMPNOM EMPNA SEX3 AGE3 ADDRESS5 CITY5

Page 191 of 250

As400 Stuff

 000001 101 K.SENTHILKUMAR M 25 ATTUR SALEM

 000002 102 R.SHYAMSUNDAR M 27 TRICHY TRICHY

 000003 103 B.MOHAN M 27 TCODE SALEM

 000004 104 K.KUMAR M 25 SALEM SALEM

 000005 105 A.ARUL M 25 SALEM NAMAKKAL

 000006 106 BALU M 25 SALEM SALEM

 000007 107 SENTHIL M 35 SALEM TRICHY

 000008 108 RAJ M 22 TCODWE SALEM

 000009 109 HEMA M 33 SALEM CHENNAI

 000010 110 VEL M 67 SALEM SALEM

 000011 111 RAMESH M 56 ATTUR SALEM

 000012 122 SUDHA M 28 SALEM ATTUR

 000013 123 KANDASAMY M 34 SALEM ATTUR

 ****** ******** End of report ********

SKANDASAMO/SUBFILE

 SUB04

 *************** Beginning of data ****************************

0002.00 FSENDESFILECF E WORKSTN

0015.00 C *IN03 DOWEQ *OFF

0016.00 C EXFMT MAIN1

0016.01 C IF *IN04=*ON AND EMPCUR='EMPNOM'

0016.02 C CALL 'SELOADALL3'

0016.03 C ENDIF

0017.00 C 03 LEAVE

0018.00 C ENDDO

Page 192 of 250

As400 Stuff

0019.00 C SETON LR

 ****************** End of data *******************************

SKANDASAMO/SUBFILE

 SELOADALL3

 *************** Beginning of data *****************************

0001.00 FNEWEMP IF E DISK

0002.00 FSENDESFILECF E WORKSTN

0003.00 F SFILE(SENWND1:RRN1)

0004.00 C Z-ADD 1 RRN1 4 0

0005.00 C SETON 28

0006.00 C WRITE SENWLT1

0007.00 C SETOFF 28

0008.00 C READ EMPNEW 30

0009.00 C N30 SETON 2526

0010.00 C DOW *IN30=*OFF

0011.00 C WRITE SENWND1

0012.00 C ADD 1 RRN1

0013.00 C READ EMPNEW 30

0014.00 C 30 LEAVE

0015.00 C ENDDO

0016.00 C DOW *IN03=*OFF

0016.01 C 03 LEAVE

0016.02 C* WRITE HEATER

0016.03 C* WRITE FOOTER1

0016.04 C EXFMT SENWLT1

Page 193 of 250

As400 Stuff

0020.00 C ENDDO

0021.00 C SETON LR

 ****************** End of data *****************************

window main1 take 8

 Select Record Keywords

 Record . . . : MAIN1

 Type choices, press Enter.

 Y=Yes

 General keywords Y

 Indicator keywords Y

 Application help

 Select General Keywords

 Record . . . : MAIN1

 Type choices, press Enter. Keyword Y=Yes

 If this record is not on display, write it

 to the display before issuing read INZRCD

 Keep record on display KEEP

 Assume record is on display ASSUME Y

 Allow rolling of lines ALWROL

 Retain CLEAR HELP HOME and ROLL keys RETKEY

 Retain command function (CFnn and CAnn) keys . . . RETCMDKEY

 Change input defaults CHGINPDFT

 Select parameters

Page 194 of 250

As400 Stuff

 Menu-Bar display MNUBARDSP

 Select parameters

 Entry field attribute ENTFLDATR

 Select parameters

 Return cursor location RTNCSRLOC Y

 Select parameters

 Define Return Cursor Location

 Record . . . : MAIN1

 Keyword number Roll

 1 of 1 Y +/-

 F4 for list

 Type parameters, press Enter.

 Keyword

 Return cursor location RTNCSRLOC Y Y=Yes

 Type indicator *RECNAME Y Y=Yes

 Cursor record RECSD Name

 Cursor field EMPCUR Name

 Cursor position Name

CF03 03

 CF04 04

TAKE 12 AND F4

 Work with Fields

 Record . . . : MAIN1

 Type information, press Enter.

Page 195 of 250

As400 Stuff

 Number of fields to roll 6

 Type options, change values, press Enter.

 1=Select keywords 4=Delete field

 Option Order Field Type Use Length Row/Col Ref Condition Overlap

 70 AGE C 21 15 014

 80 RECSD A H 10

 90 EMPCUR A H 10

 100 ---------- C 76 21 003

 110 F3->EXIT C 37 22 005

 120 EMPNOM S B 6,0 09 036 Y

 More...

 Add H Hidden

 Add M Message

 Add P Program-to-system

TAKE 12

SENWLT1

 Select Window Keywords

 Window record : SENWLT1

 Type choices, press Enter.

 Y=Yes

 General keywords Y

 Select record keywords Y

 General SFLCTL keywords Y

 Subfile display layout Y

Page 196 of 250

As400 Stuff

 Subfile messages Y

 Select General Keywords

 Window record : SENWLT1

 Type choices, press Enter.

 Keyword Y=Yes Indicators/+

 Window parameters WINDOW Y

 Select parameters Y

 Window borders WDWBORDER

 Select parameters

 Remove windows RMVWDW

 User Restore Display USRRSTDSP

 Define Window Parameters

 Record . . . : SENWLT1

 Keyword . . : WINDOW

 Referenced window Name

 -OR-

 Window definition

 Default start positioning Y=Yes

 -OR-

 Start line

 Program-to-system field Name

 Actual line 2 1-25

 Start position

 Program-to-system field Name

 Actual position 2 1-128

Page 197 of 250

As400 Stuff

 Window lines 20 1-25

 Window position 40 1-128

 Message line Y Y=Yes

 Restrict cursor to window Y Y=Yes

 Select Record Keywords

 Record . . . : SENWLT1

 Type choices, press Enter.

 Y=Yes

 General keywords Y

 Indicator keywords Y

 Application help

 Help keywords

 Output keywords

CF12 12

 CF03 03

 Define General Keywords

 Subfile control record : SENWLT1

 Type choices, press Enter. Keyword

 Related subfile record SFLCTL SENWND1 Name

 Subfile cursor relative record . . . SFLCSRRRN Name

 Subfile mode SFLMODE Name

 Y=Yes Indicators/+

 Display subfile records SFLDSP Y 25

 Display control record SFLDSPCTL Y 26

Page 198 of 250

As400 Stuff

 Initialize subfile fields SFLINZ

 Delete subfile area SFLDLT

 Clear subfile records SFLCLR 28

 Indicate more records SFLEND 30

 SFLEND parameter *MORE Y

 SFLEND parameter *SCRBAR *MORE ...

 Record not active SFLRNA

 More...

 F3=Exit F12=Cancel

 Define Display Layout

Subfile control record : SENWLT1

Type values, press Enter.

 Keyword Number

 Records in subfile SFLSIZ 6

 Program-to-system field

 Records per display SFLPAG 5

 Spaces between records SFLLIN

OUTPUT

 EMPLOYEE DETAILS

 1.SELECT

 OPT EMPNUMBER NAME

 000101 K.SENTHILKUMAR

 000102 R.SHYAMSUNDAR

 000103 B.MOHAN

 000104 K.KUMAR

Page 199 of 250

As400 Stuff

 000105 A.ARUL

 More...

 EMPLOYEE DETAILS:

1.SELECT

OPT EMPNUMBER NAME

 000106 BALU

 000107 SENTHIL

 000108 RAJ

 000109 HEMA

 000110 VEL

 More...

 EMPLOYEE DETAILS

 1.SELECT

 OPT EMPNUMBER NAME

 000111 RAMESH

 000122 SUDHA

123 KANDASAMY

2. Message subfile record format keywords

 SFLMSGRCD (subfile message record)
This keyword is used to give the line number to get the first

message in the display.

 SFLMSGKEY (subfile message key)

Page 200 of 250

As400 Stuff

This keyword is used to specify that the program message queue
is built one at a time.

 SFLPGMQ (subfile program queue)
It is a message queue created for every program active in the

call stack.

This keyword is used to specify the field that can have the name
of the program message queue.

1. How to create Message subfile?
 Create message subfile

CRTMSGF MKSFILE/LIB

WRKMSGF FILE/ANME

OPTION 12

 Add Message Description (ADDMSGD)

 Type choices, press Enter.

 Message identifier MKS0001 Name

 Message file > MKSFILE Name

 Library > SKANDASAMO Name, *LIBL, *CURLIB

 First-level message text EMPLOYEE NUMBER &1 CANNOT BE ZEROS

PAGE DOWN

Message data fields formats:

 Data type *CHAR *NONE, *QTDCHAR, *CHAR...

 Length 10 Number, *VARY

WRKMSGF

 MKS0001 0 EMPLOYEE NUMBER CANNOT BE ZEROS

 MKS0002 0 EMPLOYEE &1 NUMBER AIREADY EXIST

 MKS0003 0 EMPLOYEE NAME CANNOT BE BLANKS

 MKS0004 0 ADDRESS(1) CANNOT BE BLANKS

Page 201 of 250

As400 Stuff

 MKS0005 0 CITY CANNOT BE BLANKS

 MKS0006 0 MARITAL STATUS WILL BE WITH (M/S)

 MKS0007 0 EMPLOYEE NUMBER &1 ADDED SUCCESFULLY

 MKS0008 0 EMPLOYEE NUMBER DOES NOT EXISTS

 MKS0009 0 EMPLOYEE UPDATED SUCCESSFULLY

 MKS0010 0 EMPLOYEE NUMBERDELETE SUCCESFULLY

 Create message subfile
 10 MSGREC1 SFLMSG 06/27/02

 20 MSGCTL1 SFLCTL MSGREC1 06/27/02

USING 8 SELETION

 Select Subfile Keywords

 Subfile record : MSGREC1

 Type choices, press Enter

 Y=Yes

 General keywords Y

 Indicator keywords Y

 Message record Y

 TEXT keyword

 Define Message Record

 Subfile record : MSGREC1

 Type choices, press Enter.

 Keyword

 Line number for first message SFLMSGRCD 24 1-27

 Message ID field SFLMSGKEY DUMMY Name

 (if program message queue is built

 one message at a time)

Page 202 of 250

As400 Stuff

 Program message queue field SFLPGMQ QUEUE Name

 Generate a 276 byte field Y=Yes

MESSAGE SUBFILE (SFTCTL)

Subfile control record : MSGCTL1

 Type choices, press Enter.

 Y=Yes

 General keywords Y

 Subfile display layout Y

 Subfile messages Y

 Select record keywords Y

 TEXT keyword

 Define General Keywords

 Subfile control record : MSGCTL1

 Type choices, press Enter. Keyword

 Related subfile record SFLCTL MSGREC1 Name

 Subfile cursor relative record . . . SFLCSRRRN Name

 Subfile mode SFLMODE Name

 Program message queue field SFLPGMQ QUEUE Name

 Generate a 276 byte field Y=Yes

 Y=Yes Indicators/+

 Display subfile records SFLDSP Y

 Display control record SFLDSPCTL Y

 Initialize subfile fields SFLINZ Y

 Delete subfile area SFLDLT

 Clear subfile records SFLCLR

Page 203 of 250

As400 Stuff

 Indicate more records SFLEND

 SFLEND parameter *MORE

 SFLEND parameter *SCRBAR *MORE ...

 Record not active SFLRNA

 More...

 F3=Exit F12=Cancel

 Select Record Keywords

 Record . . . : MSGCTL1

 Type choices, press Enter.

 Y=Yes

 General keywords Y

 Indicator keywords Y

Overlay keywords Y

 Select Overlay Keywords

 Record . . . : MSGCTL1

 Type choices, press Enter.

 Keyword Y=Yes Indicators/+ Roll

 Overlay without erasing OVERLAY Y

 Create CL program for SNDPGMMSG
SKANDASAMO/EMPCUSTOR

MSG

 *************** Beginning of data *****************************

0001.00 PGM PARM(&MSGID &MSGFI &MSGDTA)

0002.00 DCL VAR(&MSGID) TYPE(*CHAR) LEN(7)

0003.00 DCL VAR(&MSGFI) TYPE(*CHAR) LEN(7)

Page 204 of 250

As400 Stuff

0004.00 DCL VAR(&MSGDTA) TYPE(*CHAR) LEN(10)

0005.00 SNDPGMMSG MSGID(&MSGID) MSGF(&MSGFI)
MSGDTA(&MSGDTA)

0006.00 ENDPGM

 ****************** End of data******************************

 Create CL program for RMVMSG
SKANDASAMO/EMPCUSTOR

RMO

 *************** Beginning of data *****************************

0001.00 RMVMSG PGMQ(*PRV) CLEAR(*ALL)

 ****************** End of data *******************************

 Design the screen
 Generate RPG program
0000.01 FMESSTAB IF A E K DISK

0001.00 FMKSSCR CF E WORKSTN

0001.01 C MOVEL MSTATUS S 1

0002.02 C MOVEL '*' QUEUE

0003.00 C MOVEL 'MKSFILE' MSGFI

0004.00 C PL01 PLIST

0005.00 C PARM MSGID 7

0006.00 C PARM MSGFI 10

0007.00 C PARM MSGDTA 10

0008.00 C DOW *IN03=*OFF

0008.01 C MOVEL 0 ERROR 1 0

0008.02 C MOVEL 0 ERROREMP 1 0

0012.00 C WRITE MSGCTL1

0013.00 C EXFMT MKSSEN

Page 205 of 250

As400 Stuff

0013.01 C CALL 'RMO'

0014.00 C IF EMPNUMB=*ZEROS

0014.01 C MOVEL 1 ERROR

0014.02 C MOVEL 1 ERROREMP

0015.00 C MOVEL 'MKS0001' MSGID

0016.00 C MOVEL *ZEROS MSGDTA

0017.00 C CALL 'MSG' PL01

0017.01 C ENDIF

1. What is active subfile?
 Subfiles, which are in the main memory, are called as active sub files.
 A maximum of 12 sub file can be active at a time.

CL Programming

1. CL commands?

1. WRKMBRPDM

2. CRTSRCPF

By using this command to create source physical file. Default PF size is
92.

3. DSPFD

It is used to display the details about the file when it is created.

4. DSPFFD

It is used for listing details about Individual Fields.

5. STRDFU

It is used to add Data into the records.

6. STRSDA

It is used to go into screen Designing or Menu Designing.

Page 206 of 250

As400 Stuff

7. CRTMSGF

For creating the Message file

8. WRKMSGF

If you want to create or change or delete any message we can use this
command.

9. CRTDTAARA

 For creating The Data Area

10. DSPDTAARA

Display the contents of Data area.

11. CHGDATARA

Change the contents of a Data area.

12. DSPLIBL

 For listing the contents of library

13. ADDLIBLE

Adds a library into current library

14. RMVLIBLE

Removes a library in current library list

15. CHGCURLIB

For changing the Current Library to a new library

16. EDTLIBL

It is used to the edit of the library file. (Change library file it is
temporary delete the library file)

For Adding or removing library lists.

17. SNDBRKMSG

Used for sending message to all user.

18. CRTPF

Page 207 of 250

As400 Stuff

It is used to create a PF. Using this command we can set the maximum
number of records, whether delete or update operation is allowed or not,
maximum storage allocation, waiting time etc can be determined

19. CRTLF

Creates the logical files

20. STRRLU

To go into the RLU we are using this command. Default length of RLU
is 132 if you give it and creating it very first time else it set the page width
value of last edited RLU. We can give the page width value from 1 to 378 in
page width option.

21. DSPSBS

It is used to list the various subsystems running under AS/400
environment. Various subsystems running are QINTER, QACTIVE, and
QBATCH etc.

22. CRTRPGPGM

It is used to create an RPG program. We can determine what sort of
source file is generated. For example when we need the entire source
compile as it is since source is default. If we give *NOSOURCE only syntax
errors is generated NOSECLVL will not allows secondary message where as
other setting is allowed it and so on

23. CRTCLPGM

To create CL program

24. EDTOBJAUT

It is used to give authority to a particular source PF. For giving
authority to other user we must give authority to library, user profile and the
source PF.

25. DSPOBJD

If we know library name and object name and we want to know the
source PF where it is residing then DSPOBJD with option as services instant of
basic will give the source PF name.

It describes various object descriptions like created Date, Created by,
Source Physical file, which it is being created, and so on.

Page 208 of 250

As400 Stuff

26. STRSQL

Starts SQL.

27. WRKSPLF

To work with Spool file

28. DLTSPLF

To delete the spool file

29. CRTDUPOBJ

This command creates duplicate object. If you want to compile a PF
having 1000 of records and when we compile it all the data will be lost else if
you want to add or delete a attribute data for other fields will have to copied.
For that we a duplicate object.

30. CPYF

Records are being copied from PF to temporary file and after compiling
it we have to again copy back from temporary file to the original file. If we
Add a attribute we have to give *map and if we want to delete a attribute we
have to give *drop in the map entry field.

31. DLTF

After copying into the original file we have to delete the temporary file
or if you want to delete any file we are using this command. DLTF will only
remove the object

32. RMVM

It is used to delete the member as well as the object.

33. RUNQRY

Displays all the records in a PF

34. CRTCMD

It is the powerful command used to create user define commands.

 35. CMPPFM

It is used to compare two programs or files. It can be coded by taking
option 54 in Subfile screen.

Page 209 of 250

As400 Stuff

36. MRGSRC

It is used to merge a file with another file. We have to mention three
files one is the root file, which is just a root and does not contain any code
even. The second file is target file where we can have the ready-made we
can copy the target source.

37. RTVCLSRC

If you delete a CL Source then we can retain the source if you are
having the object by using this command.

38. SBMJOB

If you want to submit the job in certain interval i.e. on a specified date
and time we can use this command.

39. DSPJOB

It will display all the jobs.

40. DSPUSRPRF

It will display all the entries regarding the particular user profile. It
displays information like what is the user. Profile name; date previously, user
class, printing and all.

41. CPYSRCF

If we want to copy all the members in a source PF to another source PF
this command is used.

42. WRKACTJOB

To display the active jobs running in AS/400 systems.

43. DSPJOBLOG

By using this command display the output console.

44. SNDMSG

This command is to send the message to an user.

45. DSPMSG

This command is display all the message.

Page 210 of 250

As400 Stuff

46. CHGCURLIB

Change the current library file.

47. ADDLIBLE

It is used to add the library. It is fully administrator authority.

48. RMVLIBLE

This command is to remove a library from the list.

49. CRTUSRPRF

It is used to display the rights given to a user. The system
administrator can change authority he can give the authority as a system
administrator.

50. DSPDBR (data base relation)

This is used to list all the files, which are related to a PF. It displays all
the LF that is referring the PF and also lists the child table if it is having a
relation through ADDPFCST.

51. DSPJOB

It will display all the jobs submitted within the specific interval and
display the entire user who worked on the system at that time

52. WRKMSGQ

It will list all the messages of different user in the job queue.

53. CPYSRCF

If we want to copy all the members in a source PF to another source PF
we can use this command.

 54. CPYTODKT

If we want to copy from source PF to a diskette file

 55. CPYTOTAP

If we want to copy source PF to a tape then we can use this command.

Page 211 of 250

As400 Stuff

 56. STRDBG

If we want to debug a ILE program then we can use this command .We
have to create a ILE program by compiling with 15 which is CRTRPGMOD
command and take F10 give debugging values as *Source. This will create a
module. Then we have the create the program by giving program name and
module name as the same and if we are calling any other modules also in
that include that in the CRTPGM command

Ex: CRTPGM PGM (LIB/PNAME) MODULE (LIB/PNAME)

(LIB/SPNAME)

Now the program as well as the module is created. Then we have to start the
debug by using the command.

 STRDBG PGM (LIB/PNAME) UPDPROD (*YES)

 It will show the source code of the program and we have to press F6 set
the break point and press F10 key and call the program

 CALL PNAME

F11-> display the variable

Shift + F11 -> go to module

2. Data types in CL?
Char, Logical, Numerical

3. String operation in CL?

*CAT ->Concatenate without editing.

Page 212 of 250

TYPE () LEN () VALUE ()

*DEC Default (15 5)

Max (15 9)

Default (0)

*CHAR Default (32) Default (b)

*LGL 1 Default (‘0’)

As400 Stuff

*BCAT->trailing blanks in the first character string is truncated. One blank is
inserted, and then the two character strings are concatenated. Any leading
blanks of the second operand are not truncated

*TCAT->All trailing blanks in the first character string is truncated, and then
the two character strings are concatenated. Any leading blanks of the second
operand are not truncated.

SKANDASAMO/CLP

 STRING

 *************** Beginning of data ********************************

0000.01 /*STRING *CAT *BCAT *TCAT FUNCTION */

0001.00 PGM PARM(&STR &STR1 &STR2 &STR3 &STR4)

0001.02 DCL VAR(&STR) TYPE(*CHAR) LEN(15)

0001.03 DCL VAR(&STR1) TYPE(*CHAR) LEN(15)

0001.04 DCL VAR(&STR2) TYPE(*CHAR) LEN(15)

0001.05 DCL VAR(&STR3) TYPE(*CHAR) LEN(15)

0001.06 DCL VAR(&STR4) TYPE(*CHAR) LEN(40)

0001.07 CHGVAR VAR(&STR2) VALUE(&STR *CAT &STR1)

0001.08 CHGVAR VAR(&STR3) VALUE(&STR *BCAT &STR1)

0001.09 CHGVAR VAR(&STR4) VALUE(&STR *TCAT &STR1)

0001.10 SNDMSG MSG(&STR3) TOUSR(SKANDASAMY)

0001.11 SNDMSG MSG(&STR4) TOUSR(SKANDASAMY)

0001.12 SNDMSG MSG(&STR2) TOUSR(SKANDASAMY)

0006.00 ENDPGM

 ****************** End of data **********************************

Run

call program name (string) f4

Program > STRING Name

Page 213 of 250

As400 Stuff

 Library > SKANDASAMO Name, *LIBL, *CURLIB

 Parameters > SENTHIL

 > kumar

 > ''

 > ''

 + for more values > ''

 DSPMSG

4. How to set the cursor position in particular field in particular
position?

Using the Curpos

5. How will retrieve the data in data area?
In –retrieve a data area

Out-write a data area

6. Built in function in CL?

 %SUBSTRING or %SST
The sub string built-in function produces a character string that

is a subset of an existing character string and can only be used with a
CL program.

%SUBSTRING (Character-variable-name Starting-position length)

 Or

 %SST (Character-variable-name Starting-position length)

 %SWITCH

2. Define indicator in CL?

We can set on or set off the indicator by the command.

CHGVAR (&IN30) VALUE (‘0’) ->setoff

CHGVAR (&IN30) VALUE (‘1’)->set on

Page 214 of 250

As400 Stuff

3. Message subfile in CL
Subfile cannot be used in CL but we can use message subfiles in CL.

4. CL processing commands & program control commands?

PROCESSING -> CHGVAR, SNDPGMMSG, OVRDBF, AND DLTF.

PROGRAM CONTROL ->CALL, RETURN, TFRCTL

5. How to CL code has to change to use a call procedure?

By using CALLPRC command. This is the bound call in CL that calls a
procedure within a module.

6. What are various steps accessing data area in CL?
✔ The first create a general data area use the command (CRTDTAARA)
✔ To retrieve values from data area use (RTVDTAARA)
✔ To change this value, use (CHGDTAARA)
✔ To display the current value, use (DSPDTAARA)
✔ To delete a data area use (DLTDTAARA)

2. What is the equivalent command to setll *loval in CL?
POSDBF with file position as *start will set the file to the beginning (or) using

OVRDBF and specify the key field value by RRN value (or) by giving *start.

3. Various types of message available in CL.
Message is the interface between operating system and the programs or user

and program. We can classify the message into two types namely

 Immediate message
 Predefined message

 Immediate message
Which does the program or system user create when they are sent and are not
permanently stored in the system?

✔ Control language
➢ SNDUSRMSG
➢ SNDPGMMSG
➢ SNDMSG
➢ SNDBRKMSG

✔ Display files
➢ ERRMSG
➢ SFLMSG

Page 215 of 250

As400 Stuff

✔ INQUIRY and INFORMATIONAL message:
Using SNDUSRMSG command to send type of message

 Predefined message
They are created before they are used. These messages are placed in a

message file (queue) when they are created, and retrieved from the file when
they are used.

✔ Control language
➢ SNDUSRMSG
➢ SNDPGMMSG
➢ RTVMSG

✔ Display files
➢ ERRMSGID
➢ SFLMSGID
➢ MSGCON
➢ MSGID

✔ COMPLETION and DIAGNOSTIC message
➢ Using SNDPGMMSG command these of message can be sent

to any message queue.
➢ DIAGNOSTIC message tell the calling program about errors

detected by the program. Completion message tell the result
of work done by the program.

✔ STATUS messages
Using SNDPGMMSG command status message can be sent to it’s caller’s

program message queue or to the external message queue for the job. These
messages tell the receiving program the status of the work performed by the
sending program.

✔ ESCAPE message
Using SNDPGMMSG command escape message from a CL program can be

sent to its calling program. An escape message tells the calling program ended
abnormally and why.

✔ NOTTFY message
Notify message from a CL program can be sent to the message queue of

calling program or to the external message queue. A notify message tells the
calling program about a condition under which processing can continue.

✔ Predefined message are stored in message file
➢ To create a message file

Page 216 of 250

As400 Stuff

CRTMSGF MSGF (MFILE) SIZE () AUT () TEXT ()

➢ Create and maintain messages
ADDMSGD

CHGMSGD OR WRKMSGD

DSPMSGD

RMVMSGD

Message file QCPFMSG in library QSYS contain the system message

2. What will MONMSG command in do?
The monitor message (MONMSG) command monitors the message send to

the program message queue for the conditions specified in the command. If
condition exists, the CL command specified on the MONMSG command is run.

 Types of monitor message
✔ Escape Message
✔ Status or Notify Message

 Escape Message
Escape message are send to tell your program of an error condition

that forced the sender to end. By monitoring for escape message, you can
take corrective actions or clean up and end your program.

 Status or Notify Message
Status and notify message are send to tell your program of an

abnormal condition that is not serious enough for sender to end. By
monitoring for status or notify message, your program can detect this
condition and not allow the function to continue.

 Two levels of MONMSG command
✔ Program level
✔ Specific command level

 Program level
The MONMSG is specified immediately following the last declare

command in your CL program. You can use as many as 100 program-level
MONMSG commands in a program.

 Specific command level
Here the MONMSG command immediately follows a CL command. You

can use as many as 100 commands-level MONMSG commands for a single
command.

 Monitor message command syntax

Page 217 of 250

As400 Stuff

MONMSG MSGID () CMPDTA () EXEC ()

✔ MSGID-Required
 Ex: MSGID (MCH1211)

✔ CMPDTA –(Optional)
Ex: MONMSG MSGID (MCH1211) CMPDTA (LIB)

✔ EXEC - -(Optional)
CL command

2. What are the statements, which is not used in CLLE that is used in
CLP?

✔ RCLRSC which is replaced by RCLACTGRP
✔ TFRCTL

2. How to create user define command?

By using the CRTCMD command process the command definition statements
to create the command definition object. The CRTCMD command may be run
interactively or in a batch job.

Steps for creating CRTCMD commands

1. Enter the command definition statements into the source file

 Command type CMD

SKANDASAMO/CLP

CMD1

 *************** Beginning of data ****************************

0001.00 CMD

 ****************** End of data *******************************

2. Enter source program in any language

SKANDASAMO/CLP

DLIB

TYPE : CLP

 *************** Beginning of data ******************************

Page 218 of 250

As400 Stuff

0001.00 PGM

0002.00 DSPLIBL

0003.00 ENDPGM

 ****************** End of data *********************************

3. Create the command by using CRTCMD take f4

Command > KS Name

 Library > SKANDASAMO Name, *CURLIB

 Program to process command . . . > DLIB Name, *REXX

 Library > SKANDASAMO Name, *LIBL, *CURLIB

 Source file > CLP Name

 Library > SKANDASAMO Name, *LIBL, *CURLIB

Source member > CMD1 Name, *CMD

 Threadsafe *NO *YES, *NO, *COND

 Multithreaded job action *SYSVAL *SYSVAL, *RUN, *MSG, *NORUN

 Text 'description' *SRCMBRTXT

3. Info

✔ DEFAULT CL MSGID?
CPF0000

✔ Dspf windows type?
WINDOW

✔ What is the level check error?
The level check error means RPGLE program is compiled and PF

or LF are compile suppose the PF or LF compile after the compiling the
RPGLE program this type of error is called level check error.

✔ If you want to copy a PF without making any modification to it then
FORMAT keyword is used.

✔ Default access path maintenance is *IMMED
✔ Maximum no of printer files included in a RPGLE program is 8

Page 219 of 250

As400 Stuff

✔ Maximum no of files declared in RPGLE is 50 and CL is l
✔ Maximum no of key fields included is 120
✔ Maximum no of fields included in a PF is 8000
✔ Maximum no of arrays included is a RPG is 200
✔ Maximum no of parameter passed in a RPG is 255 and CL 40
✔ Total no of system library is 15 and user library is 25
✔ While logging on the first library to be included is QSYS
✔ QGPH and QTEMP are user library
✔ Printer file default length is 132.
✔ Default size of a member is CRTSRCPF command for ordinary files is

92.

2. What's the difference between CHAIN and SETLL? Is there a
performance advantage?

There are two important differences between CHAIN and SETLL.

1. The CHAIN operation applies a record lock to files that are open or update.
The SETLL operation does not apply the lock.

2. The CHAIN operation copies the record's data to the input buffer for the
program. The SETLL operation does not.

More Details

The CHAIN operation performs a random GET operation to the database file.
If the operation is successful, the data in the record is copied to the input buffer. If
the CHAIN operation fails, a record-not-found condition is signaled, typically via
Resulting Indicator 1. If the database file has been opened for UPDATE, the CHAIN
operation places a record lock on the retrieved record. No other application can
access this record for update while this lock is applied. Furthermore, if another
program has issued a lock to the recording being accessed, the CHAIN operation
will wait for the database time-out period. If the record is released during that
period, the CHAIN operation continues. If the other program does not release the
record, the CHAIN operation fails with an exception.

CHAIN with NO LOCK

The CHAIN operation supports the NO LOCK operation extender (the old
"half-adjust" column). In RPG III you specify an N in the operation extender column,
in RPG IV, you specify CHAIN (n) for the operation code. Using NO LOCK allows you
to access a record without a record lock being applied, regardless of the way in
which the file is open. The record's data, however, is still copied to the input buffer
when NO LOCK is specified.

The SETLL operation performs a quasi READ LESS THAN OR EQUAL operation.
If the operation is successful, a READ PRIOR is performed. The database record's
data, however, is not copied to the input buffer, nor is there a record lock applied to

Page 220 of 250

As400 Stuff

the accessed record. Hence, SETLL is probably the operation code to use for testing
the existence of a record. However, if the record needs to be retrieved, CHAIN more
effective.

Performance

If your requirement is to check for the existence of a record, traditionally the
CHAIN operation is used. However, since CHAIN copies the record's data to your
program's input buffer, there is additional overhead required for the CHAIN
operation. The SETLL can be used to effectively accomplish the same task as the
CHAIN test. Use SETLL with resulting indicator 3 (equal). If this indicator is set on, a
record exists whose key matches they value specified in Factor 1. If your
requirement is that the record eventually be updated, subsequent to the existents
test, you should consider using of CHAIN.

2. How do I debug a remote (i.e. "batch") job from an interactive job?

The ability to debug another job has been a long-standing requirement for
AS/400, now Iseries programmers. It isn't as difficult as it may seem. Whether you
need to debug a batch job, another interactive job, or an HTTP server job
(browser/CGI program), the following steps can get you started.

Starting Debug for a Remote Job

1. Determine the job name of number for the job you need to debug.

✔ Use WRKACTJOB and note the Job name, number and user profile ID.

✔ If debugging a CGI program, look in the job log of the job for CPF
message HTP2001.

1. Run the Start Service Job (STRSRVJOB) command specifying the job to be
debugged

✔ E.g., STRSRVJOB JOB (012345/usrid/jobname)

1. Run Start Debug (STRDBG) on the program to be debugged

✔ E.g., STRDBG PGM (libnam/pgmname) UPDPROD(*YES | *NO)

1. At this point the program in the remote job is under debug control from your
job

✔ You can now set break points (if you're debugging an RPG IV program,
the source will have already been displayed).

✔ Press F12 from within the debugger to return to CMD entry after
setting your break points.

1. Evoke the program in the remote job. If you you're doing a web browser
session, hit the SUBMIT button.

2. You interactive job will "break" at the debug break points and you can debug
application normally.

Page 221 of 250

As400 Stuff

Ending Debug for a Remote Job

Ending the debug session should be done in the following sequence.

1. From your debugging session, run the End Debug (ENDDBG) command

2. Then run the (End Service Job) ENDSRVJOB command

Your session is no longer controlling the remote job. The remote job continues
normally.

Special Considerations when Debugging a Web Browser/CGI Program

To debug a CGI program that is evoked from a Web Browser session running from
the standard IBM HTTP Web Server, you need to do the following in addition to the
above.

Before Starting Debug for a Web Browser/CGI Session/Program

 End the HTTP Server using the following CL command:

✔ ENDTCPSVR *HTTP

✔ WARNING!!! -- You MUST include *HTTP as the parameter for
ENDTCPSVR otherwise all TCP/IP server jobs (including telnet, ftp,
smtp, etc.) will be ended. And this is a bad thing. IBM sucks for making
*ALL the default for ENDTCPSVR.

 Restart the HTTP Server using the following CL command:

✔ STRTCPSVR *HTTP HTTPSVR(DEFAULT '-minat 1 -maxat 1')

✔ This restarts the HTTP server with once instance of each job type (one
for CGI, one for Java, etc.)

✔ Using WRKACTJOB in the QHTTPSVR subsystem location the jobs
running.

✔ The job whose joblog contains the CPF message HTP2001 is the one to
be debugged.

After Finishing the Debug Session

 End the HTTP server using the following CL command:

✔ ENDTCPSVR *HTTP

 Restart the HTTP server using the following CL command, unless your shop
has another process for starting the HTTP server:

✔ STRTCPSVR *HTTP

Your system should be back to normal.

2. What is the new E operation extender used for?
The new (E) operation extender is used to cause the %ERROR and %STATUS built-in
functions to be initialized after an operation is performed. That is, these built-in

Page 222 of 250

As400 Stuff

functions and the E operation extender are used in place of Resulting Indicator 2 on
all operation codes that currently support Resulting Indicator 2 as an error
condition.

For example, to check to see if a record is locked, you would code the following:

.....CSRn01Factor1+++++++OpCode(ex)Factor2+++++++Result+++++++
+Len++DcHiLoEq
 C CustNO Chain(E) CustMast
 C if %ERROR = *ON
 C Select
 C When %STATUS = 1221
 C exsr UpdateNoRead
 C When %STATUS = 1218
 C exsr RecdLocked
 C endSL
 C ELSE
 C if %FOUND(CustMast)
 C exsr whatever...
 C endif
 C endif

The concept is to first check %ERROR for a generalized error condition, and
then check %STATUS for the specific error. Note that no resulting indicators are
used in the previous example. The normal not-found condition is checked using the
%FOUND built-in function rather than testing Resulting Indicator 1.

3. Why doesn't the %CHAR built-in function work with numeric values?

Under the initial release of OS/400 Version 4, Release 2, the %CHAR built-in
function was introduced. However, the function, as designed, only converted DATE
values to character values. This proved to be too restrictive a use for this function.
In the next release of OS/400 (V4R4) IBM will add function to %CHAR allowing it to
convert all forms of non-character data to character. In that release %CHAR will
function with numeric values.

 D Amount 7P 2 Inz(123.45)
 C Eval text = 'The amount is: ' + %Char (
 amount)

The TEXT field would contain the following after the EVAL operation is
performed:

'The amount is: 123.45'

Unlike %EDITC, the %CHAR built-in function trims off leading blanks.
However, %EDITC provides much more editing power than %CHAR. Use %CHAR for
basic number to character conversion.

Page 223 of 250

As400 Stuff

4. How does the CONST keyword work with Procedure parameters?

If you are certain that the called procedure will NOT modify a parameter, the
CONST keyword can provide several benefits.

1. It automatically converts a field of a similar data type, to the length and type
required by the parameter.

What this means, is say a parameter is a 15 position pack field,
with 5 decimals. Normally, you'd have to specify a Pdk(15,5) field for the
parameter. However, if the parameter is read-only, you can specify
CONST on the Prototype and Procedure Interface for the parameter. When
you do this, the compiler automatically converts the value (say it's a
literal of 27) to the size and type required by the parameter. This works
really cool with DATE fields. A date for any format can be passed as a
parameter value when that parameter value is CONST.

2. Performance is improved because the compiler can generate more optimized
code for the CONST parameter.

CONST can be used on calls to procedures or programs. We use it all the
time when calling QCMDEXC from within RPG IV. All three parameters of the
QCMDEXC program are CONST values. The example code below can be used as
the PROTOTYPE to call QCMDEXC from within RPG IV. To call it using this
prototype, specify something like: CALLP run('addlible myLib' 14) in your
calculation specs.

.....DName+++++++++++EUDS.......Length+TDc.Functions+++++++++++++
+
 D Run PR ExtPgm('QCMDEXC')
 D cmdstr 3000A Const Options(*VarSize)
 D cmdlen 15P 5 Const
 D cmdDbcs 3A Const Options(*NOPASS)

Note: if you're using CodeStudio or IBM's Code/400 as your RPG IV editor under
Windows, you could simply highlight the above source code within your Internet
Browser, and copy it to the Windows clipboard. Then activate CodeStudio (or
Code/400) and use the Paste function to insert the code directly into the editor.
Pretty cool, huh? <g>

Built-in Functions

1. RPG IV - Built-in Functions

The original release of RPG IV included a set of built-in functions. These built-in
functions were:

Page 224 of 250

As400 Stuff

%ADDR, %PADDR, %SIZE, %ELEM, %SUBST, %TRIM, %TRIML, %TRIMR

In addition, under OS/400 V3R2 and V3R7 the %PARMS built-in function was
introduced. Since then, several built-in functions have been added to RPG IV. The
following table provides the OS/400 Version and Release that the specific built-in
functions were introduced and/or enhanced.

NOTE: IBM Seems to skip-ship the RPG IV compiler. So RPG IV in V4R1, V4R3 and
V4R5 has no new functionality. The next scheduled upgrade is OS/400 V5R1 in
spring 2001.

Version
Release

Built-in
Function

Parameters Return Value Description

V3R7 %ABS numeric
expression

Absolute value of expression

 %ADDR variable name Address of variable

V5R1 %ALLOC memory size Pointer to the allocated
storage.

V4R2
V4R4

%CHAR graphic, date,
time, timestamp,
or numeric
expression

Value in character data type

V5R1 %CHECK compare-value :
data-to-search { :
start-position }

First position in the
searched-data that contains
a character not in the list of
the characters in the
compare value.

V5R1 %CHECKR compare-value :
data-to-search { :
start-position }

Last position in the searched-
data that contains a
character not in the list of
the characters in the
compare value. (Search

Page 225 of 250

As400 Stuff

begins with the right-most
character and proceeds to
the left.

V5R1 %DATE { value { : date-
format-code }

A date data-type value after
converting the "value" to the
specified date format. If no
value is specified, the current
system date is returned.

V5R1 %DAYS days A duration value that can be
used in an expression to add
a number of days to a date
value.

V3R7 %DEC numeric
expression
{:digits : decpos}

Value in packed numeric
format. If digits and decpos
are specified the result value
is formatted to fit in a
variable of the number of
digits specified.

V3R7 %DECH numeric
expression : digits
: decpos

Half-adjusted value in
packed numeric format. The
length and decimal positions

V3R7 %DECPOS numeric
expression

Number of decimal digits.

V5R1 %DIFF start-date : end-
date : duration-
code

Calculates the difference
between two date fields. The
type of difference returned is
specified by the duration-
code.

V4R4 %DIV Numerator :
Denominator

Performs integer division and
returns the quotient (result)

Page 226 of 250

As400 Stuff

of that division operation.

V3R7 %EDITC non-float numeric
expression : edit
code {:*CURSYM |
*ASTFILL |
currency symbol}

String representing edited
value.

V3R7 %EDITFLT numeric
expression

Character external display
representation of float.

V3R7 %EDITW non-float numeric
expression : edit
word

String representing edited
value

 %ELEM array, table, or
multiple
occurrence data
structure name

Number of elements or
occurrences

V4R2 %EOF {file name} '1' if the most recent file
input operation or write to a
subfile (for a particular file, if
specified) | ended in an end-
of-file or | beginning-of-file
condition '0' otherwise.

V4R2 %EQUAL {file name} '1' if the most recent SETLL
(for a particular file, if
specified) or LOOKUP
operation found an exact
matches '0' otherwise.

V4R2 %ERROR '1' if the most recent
operation code with extender
'E' specified resulted in an
error '0' otherwise.

Page 227 of 250

As400 Stuff

V3R7 %FLOAT numeric
expression

Value in float format.

V4R2 %FOUND {file name} '1' if the most recent
relevant operation (for a
particular file, if specified)
found a record (CHAIN,
DELETE, SETGT, SETLL), an
element (LOOKUP), or a
match (CHECK, CHECKR,
SCAN) '0' otherwise.

V4R4 %GRAPHIC Any character
value

Converts character data to
double-byte character set
value.

V5R1 %HOURS hours A duration value that can be
used in an expression to add
a number of hours to a time
value.

V3R7 %INT numeric
expression

Value in integer format

V3R7 %INTH numeric
expression

Half-adjusted value in integer
format

V3R7 %LEN any expression 1. Returns the length of a
variable or literal
value, or the current
length of a varying
length field.

2. When used on the left
side of the equal sign,
sets the length of a
varying length field.

Page 228 of 250

As400 Stuff

V5R1 %LOOKUPxx search-data :
array { : start-
index { :
elements to
search }}

An array index of the
element in the array where
the search-data is located.

V5R1 %TLOOKUPxx search-data :
searched-table { :
alternate-table }

*ON if the search is
successful, otherwise *OFF.
(NOTE: The indexes of the
searched-table and
alternate-table are set to the
index of the search-data if
*ON is returned.)

V5R1 %MINUTES minutes A duration value that can be
used in an expression to add
a number of minutes to a
time value.

V5R1 %MONTHS months A duration value that can be
used in an expression to add
a number of months to a
date value.

V5R1 %MSECONDS milliseconds A duration value that can be
used in an expression to add
a number of milliseconds to a
time value.

V3R7 %NULLIND null-capable field
name

Value in indicator format
representing the null
indicator setting for the null-
capable field.

V5R1 %OCCUR data-structure The current occurrence of
the data structure, or sets
the current occurrence of the
data structure

Page 229 of 250

As400 Stuff

V4R2 %OPEN file name '1' if the specified file is open
'0' if the specified file is
closed. Consider this built-in
to be an 'Is this file open?"
operation.

 %PADDR procedure name Address of procedure

V3R2
V3R6

%PARMS Number of parameters
passed to procedure

V5R1 %REALLOC pointer : new-size Pointer to the allocated
storage.

V4R4 %REM Numerator :
Denominator

Performs integer division and
returns the remainder from
the division operation.

V4R2 %REPLACE replacement
string: source
string {:start
position {:source
length to
replace}}

String produced by inserting
replacement string into
source string, starting at
start position and replacing
the specified number of
characters.

V3R7 %SCAN search
argument : string
to be searched
{:start position}

First position of search
argument in string or zero, if
not found.

V5R1 %SECONDS seconds A duration value that can be
used in an expression to add
a number of seconds to a
time value.

V5R1 %SHTDN *ON if the job is being shut
down (e.g., when the

Page 230 of 250

As400 Stuff

PWRDWNSYS command is
issued) otherwise *OFF is
returned.

 %SIZE variable, data
structure, array,
or literal {: *ALL}

Number of bytes used by
variable or literal. *ALL
returns the number of bytes
used by all the elements of
the array, or all the
occurrences of the data
structure.

V5R1 %SQRT expression or
value

The square root of the
expression or value.

V4R2 %STATUS {file name} 0 if no program or file error
occurred since the most
recent operation code with
extender 'E' specified most
recent value set for any
program or file status, if an
error occurred if a file is
specified, the value returned
is the most recent status for
that file.

V3R7 %STR pointer{:maximu
m length}

Characters addressed by
pointer argument up to but
not including the first x'00'.

V5R1 %SUBDT date : duration-
code

The extracted component of
the date value. (The
functional equivalent of the
EXTRCT operation code.)

 %SUBST string:
start{:length}

Substring value. If length is
not specified, the substring
begins with start and

Page 231 of 250

As400 Stuff

continues through the end of
the string.

V5R1 %THIS Used for Java integration.
Returns an Object reference.

V5R1 %TIME { value { : time-
format-code }

A time data-type value after
converting the "value" to the
specified time format. If no
value is specified, the current
system time is returned.

V5R1 %TIMESTAMP {value { : *ISO |
*ISO0 }

A timestamp data-type value
with or without separators.

 %TRIM string String with left and right
blanks trimmed (removed)

 %TRIML string String with left blanks
trimmed

 %TRIMR string String with right blanks
trimmed

V4R4 %UCS2 Any character
value

Returns a varying length
value.

V4R2 %UNS numeric
expression

Value in unsigned format

V4R2 %UNSH numeric
expression

Half-adjusted value in
unsigned format

V5R1 %XLATE from-table : to-
table : string-to-

The converted string is

Page 232 of 250

As400 Stuff

convert { :
starting-
position }

returned.

V4R4 %XFOOT Array name Cross foots (totals) all the
elements in an array.

1. Figurative constants in RPGLE

*HIVAL, *LOVAL, *ZERO, *ZEROS, *BLANKS, SETLL, SETGT.

2. Explain ADDDUR, SUBDUR, EXTRCT and TEST?

ADDDUR:
It is a powerful opcode, which is used to add any date

related function to a particular date, time or timestamp.
Example:

SKANDASAMO/DATE

ADDDUR

 *************** Beginning of data ********************************

0000.01 d*date function using the adddur

0001.00 DTIMESTE S Z

0001.01 DTIME5 S Z

0002.00 DDATE1 S D

0002.01 DDATE2 S D

0002.02 DDATE3 S D

Page 233 of 250

As400 Stuff

0002.03 DDATE4 S D

0003.00 DTIME1 S T

0003.01 DTIME2 S T

0003.02 DTIME3 S T

0003.03 DTIME4 S T

0004.00 C MOVEL *DATE DATE1

0005.00 C DATE1 ADDDUR 02:*Y DATE2

0006.00 C DATE1 ADDDUR 05:*M DATE3

0007.00 C DATE1 ADDDUR 01:*D DATE4

0007.01 C TIME TIME1

0007.02 C TIME TIMESTE

0008.00 C TIME1 ADDDUR 10:*H TIME2

0009.00 C* TIME1 ADDDUR 10:*ML TIME3

0010.00 C TIME1 ADDDUR 10:*S TIME4

0011.00 C TIMESTE ADDDUR 10:*MS TIME5

0012.00 C DATE2 DSPLY

0013.00 C DATE3 DSPLY

0014.00 C DATE4 DSPLY

0014.01 C TIME1 DSPLY

0014.02 C TIME2 DSPLY

0014.03 C TIME3 DSPLY

0014.04 C TIME4 DSPLY

0014.05 C TIME5 DSPLY

0015.00 C SETON LR

Page 234 of 250

As400 Stuff

 ****************** End of data *********************************

OUTPUT

 DSPLY 2004-06-27

 DSPLY 2002-11-27

 DSPLY 2002-06-28

 DSPLY 12.18.36

 DSPLY 22.18.36

 DSPLY 00.00.00

 DSPLY 12.18.46

 DSPLY 2002-06-27-12.18.36.953010

SUBDUR:

 It is used to find the difference between two date (or) time (or) time
stamp

 Example

SKANDASAMO/DATE

SUBDUR

 *************** Beginning of data ********************************

0000.01 d*date function using the SUBDUR

0001.00 DTIMESTE S Z

0001.01 DTIME5 S Z

0002.00 DDATE1 S D INZ (D'1977-06-20')

0002.01 DDATE2 S D

0002.02 DDATE3 S D

Page 235 of 250

As400 Stuff

0002.03 DDATE4 S D

0003.00 DTIME2 S T INZ (T'12. 50.10’)

0003.01 DTIME1 S T

0003.02 DTIME3 S T

0003.03 DTIME4 S T

0005.00 C DATE1 SUBDUR 02:*D DATE2

0006.00 C DATE1 SUBDUR 05:*M DATE3

0007.00 C DATE1 SUBDUR 01:*Y DATE4

0007.01 C TIME TIME1

0008.00 C TIME2 SUBDUR 10:*H TIME1

0010.00 C TIME2 SUBDUR 10:*S TIME4

0012.00 C DATE2 DSPLY

0013.00 C DATE3 DSPLY

0014.00 C DATE4 DSPLY

0014.01 C TIME1 DSPLY

0014.02 C TIME2 DSPLY

0014.03 C TIME3 DSPLY

0014.04 C TIME4 DSPLY

0015.00 C SETON LR

 ****************** End of data ***********************************

OUT PUT

 DSPLY 1977-06-18

 DSPLY 1977-01-20

 DSPLY 1976-06-20

Page 236 of 250

As400 Stuff

 DSPLY 02.50.10

 DSPLY 12.50.10

 DSPLY 00.00.00

 DSPLY 12.50.00

EXTRCT:

It is used to extract year, month, day, hours, minutes, seconds, and
microseconds of a time stamp or date field.

Example:

 SKANDASAMO/DATE

 EXRCT

 *************** Beginning of data ********************************

0000.01 d*FINT THE EXRCT DAY MONTH YEAR

0001.00 DTIMESTE S Z

0002.00 DDATE1 S D INZ (D'1977-06-20')

0002.01 DDATE3 S D

0002.02 DDATE2 S 5P 0

0002.04 DDATE4 S 5P 0

0002.05 DDATE5 S 5P 0

0002.06 DDATE6 S 5P 0

0002.07 DDATE7 S 5P 0

0002.08 DDATE8 S 5P 0

0003.00 DTIME0 S T INZ (T'12. 50.10’)

0003.01 DTIME1 S T

0003.02 DTIME2 S 5P 0

0003.03 DTIME4 S 5P 0

Page 237 of 250

As400 Stuff

0003.04 DTIME5 S 5P 0

0003.05 DTIME6 S 5P 0

0003.06 DTIME3 S 26P 0

0004.00 C MOVEL *DATE DATE3

0004.01 C TIME TIME1

0004.02 C TIME TIMESTE

0005.00 C EXTRCT DATE1:*M DATE2

0006.00 C EXTRCT DATE3:*M DATE4

0007.00 C EXTRCT DATE1:*D DATE5

0007.01 C EXTRCT DATE3:*D DATE6

0007.02 C EXTRCT DATE1:*Y DATE7

0007.03 C EXTRCT DATE3:*Y DATE8

0007.04 C EXTRCT TIME1:*H TIME2

0007.05 C EXTRCT TIME1:*H TIME4

0007.06 C EXTRCT TIME0:*H TIME5

0007.07 C EXTRCT TIME0:*S TIME6

0011.00 C EXTRCT TIMESTE:*MS TIME3

0012.00 C DATE2 DSPLY

0013.00 C DATE8 DSPLY

0013.01 C DATE4 DSPLY

0013.02 C DATE5 DSPLY

0013.03 C DATE6 DSPLY

0014.00 C DATE7 DSPLY

0014.01 C TIME2 DSPLY

Page 238 of 250

As400 Stuff

0014.02 C TIME4 DSPLY

0014.03 C TIME5 DSPLY

0014.04 C TIME6 DSPLY

0014.05 C TIME3 DSPLY

0015.00 C SETON LR

OUTPUT

DSPLY 6

 DSPLY 2002

 DSPLY 6

 DSPLY 20

 DSPLY 27

 DSPLY 1977

 DSPLY 12

 DSPLY 12

 DSPLY 12

 DSPLY 10

 DSPLY 441000

TEST:

Test is the most powerful opcode, which will check a date is a valid, or
not .The low level indicator is set on if the date is not valid or set off if the date is
a valid one.

Test will be given with extended factor like test (d), test (t), test (z) for
date, time and time stamp and if test without extended factor default to date (z).

Example

SKANDASAMO/DATE

Page 239 of 250

As400 Stuff

TEST

 *************** Beginning of data *********************************

0000.01 C*TEST FOR VALID DATE THE DATE VALID SETOFF OR SETON
(NOTVALID)

0001.00 C MOVEL '13/03/1999’ A 10

0002.00 C TEST (D) A 30

0003.00 C *IN30 DSPLY

0003.01 C IF *IN30=*ON

0003.02 C 'NOTVAILD' DSPLY

0003.03 C ELSE

0003.04 C 'VALID' DSPLY

0003.05 C ENDIF

0004.00 C SETON LR

 ****************** End of data ***********************************

OUTPUT

DSPLY 1

DSPLY NOTVAILD

3. Explain Compile time array, lookup, sort-a, x-foot, and Run time
array?

 Compile time array
✔ The compile time array means the elements of the array will be

loaded before the execution of the programs.
✔ The value will be static.
✔ We must declare in keyword command DIM (), CTDTAT (), and

PERRCD ().
✔ We are giving the value in after the SETON LR.

Example

Page 240 of 250

As400 Stuff

SKANDASAMO/ARRAY

COMILE

 *************** Beginning of data ********************************

0000.01 c*compile time array

0001.00 darr1 s 4 dim(3) ctdata perrcd(1)

0002.00 di s 2p 0 inz(1)

0003.00 c i do 3

0004.00 c arr1(i) dsply

0005.00 c add 1 i

0006.00 c enddo

0007.00 c seton

0008.00 **

0009.00 1001

0010.00 20

0011.00 1000

 ****************** End of data ********************************

OUTPUT

DSPLY 1001

 DSPLY 20

DSPLY 1000

 Run time array
✔ The run time array means the value will be loaded during the

runtime only.
✔ The value will be dynamic.

SKANDASAMO/ARRAY

 RUNTIME

Page 241 of 250

As400 Stuff

 *************** Beginning of data *****************************

0000.01 c*runtime array

0001.00 darr1 s 10 dim(12)

0002.00 di s 2p 0 inz(1)

0002.01 da s 3p 0

0002.02 dj s 2p 0 inz(1)

0003.00 c i do 12

0003.01 c dsply arr1(i)

0003.02 c* eval arr1(i)=a

0003.03 c add 1 i

0003.04 c enddo

0003.05 c j do 12

0004.00 c arr1(j) dsply

0005.01 c add 1 j

0006.00 c enddo

0007.00 c seton lr

 ****************** End of data *********************************

 lookup, sorta, xfoot :

 SKANDASAMO/ARRAY

SORTARRAY

 *************** Beginning of data *********************************

0000.01 c*lookup,xfoot&sorta examples

0001.00 darr1 s 4 0 dim(3) ctdata perrcd(1)

0002.00 di s 2p 0 inz(1)

Page 242 of 250

As400 Stuff

0002.01 dj s 2p 0 inz(1)

0002.02 dd s 4p 0

0003.00 c i do 3

0004.00 c arr1(i) dsply

0005.00 c add 1 i

0006.00 c enddo

0006.01 c sorta arr1

0006.02 c xfoot arr1 d

0006.03 c 1000 lookup arr1 40

0006.04 c if *in40=*on

0006.05 c 'found' dsply

0006.06 c else

0006.07 c 'notfou' dsply

0006.08 c endif

0006.09 c d dsply

0006.10 c j do 3

0006.11 c arr1(j) dsply

0006.12 c add 1 j

0006.13 c enddo

0007.00 c seton

0008.00 **

0009.00 1001

0010.00 2000

0011.00 1000

Page 243 of 250

As400 Stuff

 ****************** End of data ***********************************

DSPLY 1001

 DSPLY 2000

 DSPLY 1000

 DSPLY found

 DSPLY 4001

 DSPLY 1000

 DSPLY 1001

 DSPLY 2000

 Pre runtime array
✔ Pre runtime array is in between these 2 conditions where the

value is static and the value will be retrieved from disk and
loaded into the array.

✔ As a result there is no need to retrieve the value every time from
the disk and usage of pre runtime array makes it fast.

✔ We must declare in keyword command DIM (), FROMFILE (), and
PERRCD ().

1. What is the different between READE and CHAIN Opcodes?

READE CHAIN

1.The matching records for table The first matching records only

2. We are using the looping concept Looping is not necessary

3.The indicator Set In the EQ The indicator Set In the HI

4. We are most using in SETGT or
SETLL

It is not necessary

2. Explain Build in function in ILE?
 %SUBST (String name: String position: length)

Page 244 of 250

As400 Stuff

 %ABS (Absolute value by omitting sign)
 %EDITC (string: ‘X’)

 In a application if we want to concatenate a string with a
numeric then we can use this %EDITC

Example:

SKANDASAMO/BULID

 EDITC

 *************** Beginning of data *******************************

0001.00 da s 10a inz('shyam')

0002.00 db s 10p 0 inz(20)

0003.00 dc s 10a inz('sundar')

0004.00 dd s 10s 0 inz(12)

0005.00 de s 10a inz('rambabu')

0006.00 dout s 50a

0007.00 c eval out=a+%editc(b:'X')+c+%editc(d:'X')+e

0009.00 c out dsply

0010.00 c seton lr

0011.00

 ****************** End of data ***********************************

OUTPUT

DSPLY shyam 0000000020sundar 0000000012rambabu

 %REPLACE (Replacing string, actual string, starting position,
offset)

Here we are replacing senthilkumar from position 4 to 3 by
kum. The output will be senkumlkumar.

SKANDASAMO/BULID

 REPLACE

Page 245 of 250

As400 Stuff

 *************** Beginning of data ****************************

0000.01 d*replace the string using keyword %replace

0001.00 dc s 16a inz('senthilkumar')

0002.00 db s 20a

0003.00 c eval b=%replace('kum':c:4:3)

0004.00 c b dsply

0005.00 c seton lr

 ****************** End of data *****************************

OUTPUT

DSPLY senkumlkumar

 %TRIM (%TRIML, %TRIMR)

The use of the TRIM functions is very limited, in that they support only the
use of character variables and data structures. Numeric fields and zero-fill values
are not supported. They do, however, provide some useful function for string
handling. For example, in RPG IV, one line of code is all that's needed to left-
adjust a value within a field. For example:

.....CCRn01Factor1+++++++OpCode(ex)Factor2+++++++Result+++++++
+Len++DcHiLoEq
C ExFmtCustMaint
 C Eval CustName=%TrimL(CustName)

Typically, the %TRIM function is the only one of the three that get used. The
other two, however, do have their place.

%TRIM removes trailing and leading blanks from a field, and returns the
remaining value, in place, within the expression. The returned value is treated
similar to a constant value with leading or trailing blanks.

%TRIML removes leading blanks (trim-left) from a field, and returns the
value in place, within the expression.

%TRIMR removes trailing blanks (trim-right) from a field, and returns the
value in place, within the expression.

Page 246 of 250

As400 Stuff

 %FOUND, %EOF, %EQUAL,%OPEN

OS/400 Version 4, Release 2 RPG IV supports the elimination of the
Resulting Indicators. In their place, several new built-in functions have been
introduced. Most of these new built-in function provide information about the
result of File operations similar to the Result indicators. But instead of coding
Resulting indicator 3, for example, to check for the end-of-file condition, you
simply check the value of the %EOF built-in function.

The built-in functions that replace the Resulting Indicators include:

%FOUND, %EOF, %EQUAL. In addition, there are %OPEN, %STATUS, and
%ERROR. Mysteriously missing is %LOCK to check for a record lock condition.

%FOUND returns an *ON or *OFF condition if the previous File operation
returns a record-found condition. This is particularly useful on the CHAIN
operation. Realize, however, that when CHAIN sets on Resulting indicator 1, a not-
found condition is signaled. Whereas, without coding Resulting Indicator 1, the
%FOUND built-in function returns the found condition.

%EOF can be used to check for end-of file, beginning of file, or subfile full
conditions. A READ and READE return %EOF=*ON if the end of file is reached.
READP and READPE return %EOF=*ON if the beginning of file is reached. The
WRITE operation returns %EOF=*ON if the WRITE operation to a subfile detail
record returned a subfile-full condition.

%EQUAL is used by the SETLL operation to indicate that it detected a
record in the file with a key equal to that of the value specified in Factor 1. Since
SETLL does not read the record, does not lock the record, and does not copy the
data into the input buffer, SETLL is much faster and less of an impact on the
performance of the application than other operations, such as CHAIN. Use CHAIN
when you need to retrieve the record, use SETLL and %EQUAL when you need to
only check for the existence of a record.

%OPEN is used to check to see if a file has already been opened. The built-
in function returns *ON if the file is opened, otherwise it returns *OFF.

 %ELEM
%ELEM will display the array dimension

ELEM

 *************** Beginning of data ******************************

0001.00 darr1 s 3s 0 dim(100)

0002.00 dc s 3s 0

0003.00 c eval c=%elem(arr1)

Page 247 of 250

As400 Stuff

0004.00 c c dsply

0005.00 c seton lr

 ****************** End of data **********************************

OUTPUT

DSPLY 100

 %SIZE
%SIZE will display the size of the variable

 SKANDASAMO/BULID

SIZE

 *************** Beginning of data *****************************

0000.01 D*BY USING THIS COMMAND FIND SIZE OF DATA VALUE

0001.00 darr1 s 10p 0 dim(10)

0002.00 dds1 s 10p 0 dim(20)

0003.00 dnum s 20p 0

0004.00 c z-add 2 a 20 0

0005.00 c movel 'senthil' b 10

0006.00 c eval num=%size(a)

0007.00 c

0008.00 c num dsply

0009.00 c eval num=%size(b)

0010.00 c num dsply

0011.00 c eval num=%size(arr1)

0012.00 c num dsply

0013.00 c eval num=%size(arr1:*all)

0014.00 c num dsply

Page 248 of 250

As400 Stuff

0015.00 c eval num=%size(ds1)

0016.00 c num dsply

0017.00 c eval num=%size(ds1:*all)

0018.00 c num dsply

0019.00 c seton lr

 ****************** End of data **********************************

OUTPUT

DSPLY 6

DSPLY 11

DSPLY 10

DSPLY 6

DSPLY 60

DSPLY 6

DSPLY 120

 %EDITW

@ References:

http://www.allinterview.com/Interview-Questions/RPG400.html

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c092508380.htm#H
DRPROGXPE

http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c092508377.htm#H
DRFILEXPE

Page 249 of 250

http://www.allinterview.com/Interview-Questions/RPG400.html

As400 Stuff

http://faq.midrange.com/data/cache/13.html

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/dbp/rbafomst199.htm
#HDROPNQF

http://www.geocities.com/SiliconValley/Hills/6632/opnqryf.html

http://www.allinterview.com/Interview-Questions/RPG400.html

http://sumedh.shende.googlepages.com/as400interviewquestionspartii

Page 250 of 250

http://sumedh.shende.googlepages.com/as400interviewquestionspartii
http://www.allinterview.com/Interview-Questions/RPG400.html
http://www.geocities.com/SiliconValley/Hills/6632/opnqryf.html
http://faq.midrange.com/data/cache/13.html

	Basic
	1. Define library?
	1. Define object?
	1. What is the difference between OPM, EPM and RPGLE?
	2. What are the disadvantages of using CL over RPG?
	1. How you can read and write single command in CL?
	2. How to retrieve a date in CL?
	3. How to copy a record in existing object to another object?
	4. How you will avoid multiple users updating the same records?
	Program 1
	Program2

	5. Explain WRKOBJPDM and DSPOBJD?
	1. How to create RPG, RPGLE, CL, CLLE, PF, LF, PRN, and display file?
	2. What are the advantages of using AS/400 system?
	1. What are the various types of Security in AS/400?
	1. Explain user profile and group profile?
	1. What is Lock? How you achieve in AS/400?
	1. How you will release the lock?
	2. Explain about RTNCSRLOC?
	3. How you execute CL command in RPGLE?
	4. What's new in V4R4 and RPG IV?
	5. Can you clear up the confusion in the different releases of RPG IV and OS/400 and ILE?
	Names Are Important
	RPG IV -- Release what?
	ILE Concepts

	1. Integrated Language Environment (ILE)
	1. What is a Module?
	2. What is a Service Program?
	3. What is a binding Directory?
	4. Why Import and Export?
	5. What is Activation Group?
	6. Name Some ILE API’s? And tell something about them?
	7. What are activation groups?
	8. How do I create and use a service program
	9. Modules - How to write and reuse them
	1. What are the ILE RPG coding programming considerations?
	2. What Opcodes are added in ILE?
	3. What are the behavioral differences b/w OPM RPG/400 and ILE?
	4. ILE advantages over RPG?
	1. Define binder program?
	2. How to the create module?
	3. What are the differences in CALL, CALLB and CALLP?
	4. What is the difference between Bind by value and Bind by reference?
	5. Define pass by value and pass by reference?
	1. What are Program Entry Procedure (PEP) and User Entry Procedure (UEP)?
	2. Define Copybook in RPGLE?
	3. How to create a service program and what are the steps involved in this?
	Advantages of service programs
	Disadvantages of service programs
	1. Explain procedure used in RPGLE?
	Database
	1. Define source physical file?
	2. Physical Files and Logical File
	1. List the differences between physical file and logical file.
	2. What are the four levels of entries in physical file?
	1. What are the six levels of entries in logical file?
	1. Explain JDUPSEQ and JDFTVAL.
	1. What are the different between non-join logical files and join logical files.
	2. How many record formats can have physical & logical file.
	1. What is the advantage open query file?
	1. Explain non-join logical file?
	1. It is possible to insert record to JOIN LF?
	2. Explain join logical file?
	1. Explain self join?
	2. Explain normalization?
	3. Explain the command ADDPFCST?
	4. How to send the message to the screen SNDPGMMSG?
	5. How you can list all the LF of a PF?
	6. What is use of DSPFFD and DSPFD?
	1. Explain inner join or natural join and left outer join?
	 Display Report
	 EMPNO EMPNAME1 ADDRESS TEL

	1. How to create a trigger in AS/400?
	1. How will be establishing REFERENTIAL INTEGRITY in as/400 systems?
	1. What RUNSQLSTM will do?
	1. What is a field reference file?
	2. What are the various ways creating access path?
	1. How many record formats PF, LF, DSPF and SFL?
	2. Define KLIST?
	3. Define PLIST?
	4. Define composite key?
	5. Is it possible to create a logical file whose Physical file is not in same library?
	6. Can you delete the record space permanently in PF through CL?
	7. What is the difference between adding keys & constraints into a physical file?
	8. How to insert more than one record to a pf at a time? (Bulk insert to a pf)
	9. How to see number of logical files depending on a pf? Can we declare more than 20 logical files from a single pf? Is it possible?
	10. I want to change the attribute of field or want to add new field in existing PF but condition is format level identifier should not change, is it possible?
	11. Maximum how many fields we can create under a record format of PF?
	12. How can we write LF using flat file?
	13. Why we create the Physical File Member?
	14. CHGPF to compile the PF without using the data:
	15. Multi format Logical file Example:
	16. Access Path – PF and LF
	17. Tell me the differences between DB2 CLI (call Level Interface) and embedded SQL?
	18. General points in DB2/400
	1. File pointer – after a failed chain operation
	2. What are Triggers?
	3. What is the purpose of USROPN keyword?
	4. What is LEVEL CHECK?
	OVRDBF
	1.	What exactly the OVRDBF does?
	OPNQRYF
	5. What is the open query file?
	1. What is the different between OPNQRYF and SQLRPG?
	2. What are the various steps in creating OPNQRYF?
	1. How the records are accessed for using OPNQRYF?
	2. What is the difference between FMTDTA and OPNQRYF?
	3. List out the Differences between a LF and command OPNQRYF?
	4. OPNQRYF - Short explanation with samples in CLP
	5. OPNQRY Example
	SQLRPGLE
	6. SQLRPGLE Example
	7. SQL Cursor:
	8. Sample imbedded SQLRPGLE program
	9. Embedded SQL:
	Journal
	1. What is the journal?
	2. What are the various steps creating journal?
	1. Explain Commitment Control?
	2. Can anybody tell why Journaling is compulsory before Commitment Control?
	3. Commitment control Implementation and controlling commitment control from external program.
	Data Areas, Queues, Arrays & Structures:
	1. What is the data area?
	2. Define LDA, GDA, and PIP?
	2. What is the data queue?
	2. Explain QSNDDTAQ and QRCVDTAQ?
	2. What are the mandatory parameters for declaring a Data queue?
	2. What is the command to create menu?
	3. What is the difference between CALL and Transfer Control (TFRCTL)?
	4. Explain Multi Dimensional Array?
	2. Define data structure and types of data structure?
	2. How do I declare an array with a dynamic number of elements?
	3. Data structure array basics
	5. Data area, Data Queue and Message Queue:
	6. Group Jobs and Group data area:
	7. Data Structure Array and Example:
	8. Difference between Data area and data queue:
	9. Difference between data-structure array and multi occurrence data structure
	10. RPG data structure arrays improvement over multiple-occurrence data structures
	11. Compile time array, pre run time array run time array
	12. RNF7701 data structure not allowed
	DEBUG

	1. How to Debug a Batch ILE RPG?
	2. Debug value of pointer?
	3. How do I debug ILE programs? STRISDB doesn't work!
	1. How can I debug an ILE program in batch?
	1. How can I debug an OPM program in batch?
	2. How can I tell if my program is running in batch or interactive?
	3. How to debug jobs in MSGW without ending it?
	4. How do you do debugs for ILE programs and Handle Exceptions?
	Programming Concepts

	1. General RPG IV Program Cycle
	2. What are Static bind and Dynamic binds?
	3. CRTBNDRPG & CRTRPGPGM
	4. Hidden Fields:
	5. Last statement of any RPG pgm is LR?
	6. Is Constant can be define as a key field?
	7. Which keyword is used both in subfile and subfile control record format of a DSPF?
	8. Define interactive jobs and batch jobs?
	9. WHAT IS THE DIFFERENCE BETWEEN 'COLHDG' AND 'ALIAS'?
	10. What's the difference between CONST and VALUE?
	11. CL – EOF:
	12. Level Check Error:
	13. Significance of Return and *INLR = *ON.
	15. EDTCDE & EDTWRD, OVERLAY, RSTDSP, Command Attention key and Command Function Key and Validity check:
	1. What is the difference between CA and CF keys?
	1. What is PSDS?
	2. What is the file information data structure?
	3. CL Parameter Basics
	1. Calling program TSTCALL code:
	2. Display Program References (DSPPGMREF)
	1. Difference between *Omit and *no pass:
	1. What do we mean by externalizing?
	2. What will FOR opcode will do?
	3. What are the various stages for a job after it is submitted?
	4. What is an activation group?
	1. What are the statements that are affected by activation group?
	1. How to see source of copybooks include in a program while compiling or debugging?
	2. Explain keyword in ILE?
	1. How you can schedule a job to run periodically?
	2. How you can import and export a data type between 2 programs?
	3. Navigation between two screens
	4. Define indicator & MOVEA?
	1. Define ITER / LEAVE/DO/Dow?
	2. Explain Assume and Overlay?
	3. Why externalize?
	4. What is the disadvantage of using Validity Check keyword? How to overcome these disadvantages?
	1. Chain:
	8. What is the purpose of the following?
	FORDHDR1 IF E K DISK
ORDHDRF KRENAMEORDHDRF1
	In order to rename the record format of a data base file in a program, we can use the above steps. Purpose of renaming is: If the record format name is similar in two files and if both are used in a same program, the program will not compile. Hence we have to rename either of the file.
	9. What is the purpose of the following
C/COPY QRPGSRC,ORDERR
	10. What is the purpose of the following? A CSRLOC (F1ROW F1COL)
	16. How would you join 3 separate fields, a first name, middle initial and last name together as 1 field with proper spacing? You can describe in either RPG and/or RPG ILE (Integrated Language Environment)
	17. When PGMA calls PGMB for the first time PGMB executes the *INZSR. PGMB uses the RETRN operation to return to PGMA. When PGMA call PGMB the second time is the *INZSR executed?
	18. Show 2 ways to convert a date from YYMMDD to MMDDYY (MULT operation not acceptable)
	21. Describe the function of SETLL operation in RPG language?
	22. Describe the function of SETGT operation in RPG language?
	92. What are the uses of FACTOR1, FACTOR2 and RESULT field for the RPG operation code PARM?
	93. How will you find a string using PDM?
	 By using FNDSTRPDM.
	94. How do you read changed records backward in subfile?
	 NOT POSSIBLE.
	95. What is the difference between normal UPDDTA to PF and updating using DFU program?
	Both are same only difference is DFU allows you to add or change selected fields
	133.	What is the syntax for PLIST?
	*ENTRY PLIST PARM
	134.	Which are the String Manipulation Opcodes?
	TESTN, SCAN, CHECK, CHECKR, SUBST & CAT
	Sub Procedures:
	1. Why Sub procedures are used?
	1. Can you use a sub procedure in a sub procedure?
	2. What are the specifications used in a sub procedure?
	3. How many ways a sub procedure can pass parameters?
	4. How do you invoke a stored procedure?
	5. Is there any cycle code generated for the sub procedure?
	6. What are the Important frequently used commands in ILERPG environment?
	7. What are CODE/400 / Visual Age??
	8. What are Main Procedure and a sub procedure?

	Sub Files
	1.	Explain about sub files in AS/400?
	2. Message subfile record format keywords
	1. How to create Message subfile?
	1. What is active subfile?
	CL Programming
	1. CL commands?

	2. Data types in CL?
	3. String operation in CL?
	4. How to set the cursor position in particular field in particular position?
	5. How will retrieve the data in data area?
	6. Built in function in CL?
	2. Define indicator in CL?
	3. Message subfile in CL
	4. CL processing commands & program control commands?
	5. How to CL code has to change to use a call procedure?
	6. What are various steps accessing data area in CL?
	2. What is the equivalent command to setll *loval in CL?
	3. Various types of message available in CL.
	2. What will MONMSG command in do?
	2. What are the statements, which is not used in CLLE that is used in CLP?
	2. How to create user define command?
	3. Info
	2. What's the difference between CHAIN and SETLL? Is there a performance advantage?
	More Details
	CHAIN with NO LOCK

	Performance

	2. How do I debug a remote (i.e. "batch") job from an interactive job?
	Starting Debug for a Remote Job
	Ending Debug for a Remote Job
	Special Considerations when Debugging a Web Browser/CGI Program
	Before Starting Debug for a Web Browser/CGI Session/Program

	2. What is the new E operation extender used for?	
	3. Why doesn't the %CHAR built-in function work with numeric values?
	4. How does the CONST keyword work with Procedure parameters?
	Built-in Functions
	1. RPG IV - Built-in Functions
	Return Value Description

	1. Figurative constants in RPGLE
	2. Explain ADDDUR, SUBDUR, EXTRCT and TEST?
	3. Explain Compile time array, lookup, sort-a, x-foot, and Run time array?
	1. What is the different between READE and CHAIN Opcodes?
	2. Explain Build in function in ILE?
	@ References:

